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Photon Assisted Current in Molecular Nanojunctions with
Novel Types of Contacts

Boris D. Fainberg

Faculty of Science, Holon Institute of Technology, 58102 Holon, Israel
School of Chemistry, Tel-Aviv University, 69978 Tel-Aviv, Israel

Abstract. We propose new approaches to coherent control of transport via molecular junctions, which bypasses several of the
hurdles to experimental realization of optically manipulated nanoelectronics noted in the previous literature. The first method
is based on the application of intrinsic semiconductor contacts and optical frequencies below the semiconductor bandgap.
Our analytical theory predicts a new phenomenon, referred to as coherent destruction of induced tunnelling, which extends
the phenomenon of coherent destruction of tunnelling frequently discussed in the previous literature. We also propose to use
graphene electrodes as a platform for effective photon assisted tunneling through molecular conduction nanojunctions. We
predict dramatic increasing currents evaluated at side-band energies ∼ nh̄ω (n is a whole number) related to the modification
of graphene gapless spectrum under the action of external electromagnetic field of frequency ω . Our results illustrate the
potential of semiconductor and graphene contacts in coherent control of photocurrent.

Keywords: Molecular conduction nanojunctions, dressed states, semiconducting and graphene electrodes
PACS: 73.23.-b, 73.63.Rt, 78.67.Wj, 42.50.Hz

INTRODUCTION

The field of molecular-scale electronics has been rapidly
advancing over the past two decades, both in terms of
experimental and numerical technology and in terms
of the discovery of new physical phenomena and real-
ization of new applications (for recent reviews please
see Refs.[1, 2]). In particular, the optical response of
nanoscale molecular junctions has been the topic of
growing experimental and theoretical interest in recent
years [3, 4, 5, 6], fueled in part by the rapid advance of
the experimental technology and in part by the premise
for long range applications in optoelectronics. The ul-
timate goal of controlling electric transport with coher-
ent light, however, has proven challenging to realize in
the laboratory. One difficulty that has been noted in the
previous literature is substrate mediated processes. Light
shine on a molecular system in contact with a metal
substrate is adsorbed by the substrate, rather than by a
molecular bond or the molecule–surface bond in the vast
majority of cases, leading to the excitation of hot carri-
ers. The latter may interact with the molecule and lead
to interesting dynamics, but in the process coherence is
lost. Other competing processes include heating of the
electrodes (one of which often consists of an STM tip)
and undesired energy transfer events.

Reference [4] proposes the use of semiconducting
electrodes and sub-bandgap frequencies to circumvent
undesired substrate-mediated and heating processes.
Here, an ultrafast, nanoscale molecular switch is in-
troduced, consisting of a conjugated organic molecule

adsorbed onto a semiconducting surface and placed near
a scanning tunneling microscope tip. A low-frequency,
polarized laser field is used to switch the system by
orienting the molecule with the field polarization axis,
enabling conductance. Semiconducting electrodes have
been used in the experimental literature in the context of
a single-quantum-dot photodiode that may be considered
as a quantum dot-based junction [7, 8]. In addition to
introducing a new opportunity for coherent control of
transport via junctions, semiconductor-based molecular
electronics offer potentially several other attractive prop-
erties. From a chemical perspective, organic molecules
typically form much stronger bonds with semiconduct-
ing surfaces, such as doped silicon, than with metals.
From a technological perspective, the addition of molec-
ular function to the already established silicon-based
technology is vastly more viable than replacing silicon
by metal-based electronics.

In the first part of the work we propose and explore
theoretically a new approach to coherent control of elec-
tric transport via semiconducting junctions, which is sim-
ilar to the concept introduced in Ref. [4] in capitalizing
on the use of sub-bandgap frequencies, but is comple-
mentary in application. Our approach is based on the
excitation of dressed states of the junction Hamiltonian
that can be frequency-tuned to tunnel selectively into ei-
ther the left or the right contacts, thus generating unidi-
rectional current whose temporal characteristics are con-
trolled by the light pulse.

Furthermore, a way of the control of the current
through molecular conduction nanojunctions is the well-
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known photon-assisted tunneling (PAT) [9, 1] that was
studied already in the early 1960’s experimentally by
Dayem and Martin [10] and theoretically by Tien and
Gordon using a simple theory which captures already the
main physics of PAT [11]. The main idea is that an exter-
nal field periodic in time with frequency ω can induce in-
elastic tunneling events when the electrons exchange en-
ergy quanta ω with the external field. PAT may be related
either to the potential difference modulation between the
contacts of the nanojunction when electric field is par-
allel to the axis of a junction [11, 9, 5], or to the elec-
tromagnetic (EM) excitation of electrons in the metallic
contacts when electric field is parallel to the film surface
of contacts [11]. According to the Tien-Gordon model
[11, 9, 5] for monochromatic external fields that set up
a potential difference V (t) = V0 cosωt, the rectified dc
currents through ac-driven molecular junctions are de-
termined as [9, 5]

IT G =
∞

∑
n=−∞

J2
n (

eV0

h̄ω
)I0

dc(eV0 +nh̄ω) =
∞

∑
n=−∞

In (1)

where the current in the driven system is expressed by
a sum over contributions of the current I0

dc(eV0 + nh̄ω)
in the undriven case but evaluated at side-band ener-
gies eV0 +nh̄ω shifted by integer multiples of the photon
quantum and weighted with squares of Bessel functions.
A formula similar to Eq.(1) can be obtained also for EM
excitation of electrons in the metallic contacts [11]. Note
that the partial currents In contain contributions from ±n.

The term Jn(
eV0
h̄ω ) denotes the n-th-order Bessel function

of the first kind. The photon absorption (n > 0) and emis-
sion (n < 0) processes can be viewed as creating effective
electron densities at energies eV0 ±nh̄ω with probability

J2
n ( eV0

h̄ω ). These probabilities strongly diminish with num-
ber n when eV0 ≤ h̄ω that severely sidelines the control
of the current for not strong EM fields (< 106 V/cm [1]).

In the last time graphene, a single layer of graphite,
with unusual two-dimensional Dirac-like electronic exci-
tations, has attracted considerable attention due to its ex-
ceptional electronic properties (ballistic in-plane electron
transport etc.) [12, 13]. Quite recently they have shown
interest to a new kind of graphene-molecule-graphene
(GMG) junctions that may exhibit unique physical prop-
erties, including a large conductance (achieving 0.38
conductance quantum) etc. [14]. The junction consists of
a conjugated molecule connecting two parallel graphene
sheets. In this relation it would be interesting to in-
vestigate PAT in such a junction to control the current
through it. The PAT in GMG junctions under EM ex-
citation of electrons and holes in the graphene contacts
may be rather different from that for usual metallic con-
tacts. It was shown that the massless energy spectrum
of electrons and holes in graphene led to the strongly
non-linear EM response of this system [15]. Sure, the

strongly non-linear EM response should also lead to a
slow falling down currents evaluated at side-band ener-
gies ∼ nh̄ω (see Eq.(1)) with harmonics index n in com-
parison to nanojunctions with metallic (or semiconductor
[16]) leads (see below). This makes controlling charge
transfer essentially more effective than that for molecular
nanojunctions with metallic contacts. Additional factors
that may enhance currents evaluated at side-band ener-
gies ∼ nh̄ω in nanojunctions with graphene electrodes
are linear dependence of the density of states on energy
in graphene [12], and the gapless spectrum of graphene
that can change under the action of external EM field (see
below).

In the second part of the work we propose and explore
theoretically a new approach to coherent control of elec-
tric transport via molecular junctions, using either both
graphene electrodes or one graphene and another one - a
metal electrode (that may be an STM tip). Our approach
is based on the excitation of dressed states of the doped
graphene electrode with electric field that is parallel to its
surface, having used unique properties of graphene men-
tioned above.

PHOTON ASSISTED CURRENT IN
MOLECULAR NANOJUNCTIONS WITH
SEMICONDUCTOR CONTACTS [16, 17]

We consider a molecular junction consisting of a molec-
ular moiety that possess a permanent dipole moment D
and is in contact with two intrinsically semiconducting
electrodes. The use of SC contacts circumvents energy
transfer from the bridge to the contacts [8], a complicat-
ing feature in junctions with metallic contacts, since, as
noted above, sub-bandgap light cannot excite electron-
hole pairs in a semiconductor substrate [4]. Hence, the
main source of relaxation in SC-molecule-SC junctions
under the conditions considered is the charge transfer
between the bridge and the contacts. The interaction
of a nonresonant EM field with such systems leads to
modulation of their energetic spectrum by the field fre-
quency ω [18, 19, 21]. The efficiency of the energy spec-
trum modulation depends on the interaction parameter
z = D ·E0/(h̄ω), where E0 is the amplitude of the elec-
tromagnetic field E(t). The permanent dipole moment of
relevant molecules can reach 10 D and more. The spec-
tral modulation alters the arrangement of molecular elec-
tronic states and may substantially change the electron
and hole transfer rates between the molecular bridge and
the SC contact, due to the strong dependence of these
rates on the position of the molecular level relative to
the conduction band (CB) and valence band (VB). Sup-
pose that initially a single molecular level of energy εi is
positioned between the conduction and valence bands of
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FIGURE 1. Electromagnetic excitation applied to a molecu-
lar bridge in state εi leads to generation of its photonic replica at
energies εi ± h̄ω . Tunnelling from the photonic replica results
in a unidirectional photocurrent. CB - conduction band, VB -
valence band.

the SC contacts shown in Fig.1. No current in such SC-
molecule-SC junction is possible even in the presence of
the voltage bias. If, however, an electromagnetic pulse
of appropriate frequency ω excites the molecular bridge,
photonic “replication” of state i with energy εi + h̄ω can
be tuned to be close to the CB, while the photonic “repli-
cation” with energy εi − h̄ω is energetically close to the
VB. In that situation a current flows through the junction
and its temporal duration is controlled by the electromag-
netic pulse characteristics. The transport rate is largely
controlled by the applied voltage bias, which determines
the barrier width (the asymmetric case, where the molec-
ular level is remote from the gap center, is addressed in
Ref.[16]). This control enables us to realize coherent ex-
citation of a molecular bridge while circumventing com-
peting processes.

Theory

The complete Hamiltonian describing a molecular
bridge interacting with two semiconductor electrodes
and subject to a low frequency optical pulse is written
as, Ĥ = Ĥwire + ĤSC +Ŵ +V̂ , where the zero order wire

Hamiltonian,

Ĥwire =
N

∑
n=1

εnĉ†
nĉn −Δ

N−1

∑
n=1

(ĉ†
n+1ĉn + ĉ†

nĉn+1) (2)

is described as a tight-binding model composed of N
sites, where each site represents available orbitals (e.g.
the HOMO and/or the LUMO), εn denotes the electron
energy on site n and ĉ†

n (ĉn) are creation (annihilation)
operators for electrons in site n. The Δ term in Eq. (2)
accounts for electron transfer interactions between near-
est sites within the Huckel model. The Hamiltonian of
the intrinsic semiconductor leads is given as, ĤSC =
∑n=1,N ∑k∈Kn(εckĉ†

ckĉck + εvkĉ†
vkĉvk) where c (v) denote

the conduction (valence) bands and εc(v)k are the corre-
sponding quasicontinuum electron energies. In what fol-
lows we will omit the band indices c and v when not
essential, so as to simplify the notation. We denote by
K1 the lead in contact with bridge site n = 1 and by KN
the lead in contact with site n = N. Ŵ (t) = −D ·E(t) de-
scribes the interaction of the bridge sites with an external
electromagnetic field E(t), where the dipole operator has
only diagonal elements, Dmm = D[δN1 +(N+1−2m)/2].
Here D is given by the product of electron charge by the
distance between the neighboring sites [1], and δN1 is the

Kronecker delta. Finally, V̂ = ∑n=1,N;k∈Kn(Vnckĉ†
ckĉn +

Vnvkĉ†
vkĉn) + h.c., where h.c. denotes Hermitian conju-

gate, describes electron transfer between the molecular
bridge and the leads, thus giving rise to net current via
the biased junction.

We consider electronic transport through the molec-
ular wire, where the semiconductor leads Kn, n = 1,N
are taken to be each in its own equilibrium charac-
terized by its temperature T (here taken equal for the
two leads) and electronic electrochemical potentials μKnc
and μKnv for the conduction and valence bands, respec-
tively. Therefore, the lead electrons are described by the
equilibrium Fermi functions fKn(εc(v)k) = [exp((εc(v)k −
μKnc(v))/kBT ) + 1]−1 where kB is Boltzmann’s con-
stant. Consequently, expectation values for lead opera-

tors are simplified through the relation 〈ĉ†
c(v)kĉc(v)k′ 〉 =

fKn(εc(v)k)δkk′ .
Our analysis is based on the generalized master equa-

tion for the reduced density matrix of the molecular sub-
system treating V̂ as a perturbation [1, 22, 23]. Briefly,
one starts with the equation of motion for the total den-
sity operator and uses projectors onto the left (L) and
right (R) quasicontinua of the type PKρ(t) = ρKTrKρ(t),
K = L,R, in order to derive an equation for the time evo-
lution of the reduced density matrix σ(t) = TrRTrLρ(t)
[17, 16].

12 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.66.11.211 On: Fri, 04 Apr 2014 16:37:34



Single site molecular bridge

In this section we specialize the theory developed in
the previous section to the simplest case scenario of a sin-
gle site bridge. We illustrate a new and fundamentally in-
teresting phenomenon, namely zeros of the light-induced
currents as a function of the interaction strength, which
are reminiscent of the phenomenon of coherent destruc-
tion of tunneling [24, 1, 5], and which we term coherent
destruction of induced tunneling (CDIT).

Using the equation of motion for σ [17, 16], one ob-
tains relations for the expectation values of the molecular

bridge operators Pi′i = 〈ĉ†
i ĉi′ 〉 ≡ Tr(ĉ†

i ĉi′σ) = P∗
ii′ that are

binary in the creation and annihilation operators for elec-
trons in the molecular states. The time evolution of the
molecular bridge population Pii reduces under the condi-
tions of Fig.1 to,

dPii

dt
= ∑

n
[2(1−Pii)ΓvKn,i −2PiiΓcKn,i] (3)

where

ΓvKn,i =
∞

∑
r=1

J2
r (zi)γrr

vKn,i,ΓcKn,i =
−1

∑
r=−∞

J2
r (zi)γrr

cKn,i, (4)

ωi = εi/h̄, zi = Dii ·E0/(h̄ω), and

γrr
c,vKn,i =

π
h̄2 ∑

k
|Vc,vki|2δ (ωk −ωi + rω) (5)

are the spectral functions, which take the significance of
replication-specific decay rates due to coupling of the
bridge site with the conduction (c) and the valence (v)
band of the electrode. For the specific model depicted in

Fig.1, γ11
vL,i = γ−1,−1

cR,i = 0, and, given that only a single
site is included (N = 1), we replaced the Kn, n = 1,N
notation by K1 = L for the left electrode and KN = R for
the right electrode of the single site junction.

Equation (4) describes the rate of electron transfer be-
tween the molecular state i and the conduction (valence)
bands (Γc(v)L(R),i) as a sum over contributions of electron
transfer rates γrr

c(v)R(L),i, in which the underlying potential

coupling constants Vc(v)ki are evaluated in the absence of
the laser field but the energy-conserving δ -function tunes
the electron energy to the r-photonic replication, that is,
to the side-band energy h̄ωi ± |r|h̄ω shifted by integer
multiples of the photon quantum. The dependence on
the interaction strength, zi = Dii ·E0/(h̄ω), is solely con-
tained in the squared Bessel functions in Eq. (4), which
serve as weight functions for the γrr

c(v)R(L),i components

of Γc(v)L(R),i. Note that the partial electron transfer rates

J2
r (zi)γrr

cL(R),i and J2
r (zi)γrr

vL(R),i contain contributions from

negative and positive r-values, respectively. Thus, the
photon absorption (r < 0) and emission (r > 0) processes

can be viewed as creating effective molecular states at
energies h̄ωi +rh̄ω with probabilities J2

r (zi). These prob-
abilities decay rapidly with r when |zi| < 1.

The electronic current IL,R is given by [17, 16]

IK = −2e[(1−Pii)ΓvK,i −PiiΓcK,i]. (6)

The first order differential equation (3) can be readily
integrated. In the steady-state limit we get

IL = −IR = 2eJ2
1 (zi)

γ−1,−1
cL,i (ΓvR,i − γ11

vR,i)+ γ11
vR,iΓcL,i

Γvi +Γci
.

(7)
i.e., as expected, under steady state conditions the cur-
rents are equal. Here Γvi = ∑Kn ΓvKn,i and Γci = ∑Kn ΓcKn,i
are the rates of electron transfer between the molecular
state i and the valence and conduction bands, respec-
tively, of the two leads, and we used Eq.(6). For broad
conduction and valence bands and |r| > 1, it may be ex-
pected that, due to symmetry, the spectral functions of
the r-th order replication would be equal for the left and
right contacts, i.e. γrr

cL,i = γrr
cR,i and γrr

vR,i = γrr
vL,i that we

took into account when derived Eq. (7).
Equation (7) shows that a steady-state current is pro-

portional to the square of the first-order Bessel func-
tion J2

1 (zi). This implies that the current vanishes iden-
tically at zeros of J1(zi) (i.e. for zi = 0, 3.8, 7, ...).
The phenomenon observed in Eq. (7) is referred to in
what follows as coherent destruction of induced tunnel-
ing (CDIT), as it extends the extensively studied prob-
lem of coherent destruction of tunneling (CDT), related
to zeros of J0(zi) [24, 1, 5] to the case of light-induced
tunneling. In the present case the effect could be formu-
lated as dressing of the laser-free coupling of the molec-
ular bridge with semiconductor leads, Vc(v)ki, by the light
field to make the effective coupling,

Vc(v)ki → (Vc(v)ki)e f f = J∓1(zi)Vc(v)ki

for the electron transfer rates γ−1,−1
cL,i and γ11

vR,i (see
Eq.(7)). These effective tunneling matrix elements
(Vc(v)ki)e f f are suppressed at zeros of J∓1(zi).

A two-site molecular bridge

In this section we consider the case of a two-site
molecular bridge in contact with SC leads. Specifically,
we envision two molecular sites of energies ε1 and ε2

(Fig.2) that are excited by EM field E(t) = E0 cos(ωt)
tuned to a sub-bandgap frequency ω , such that the
dressed energies ε1,2 + h̄ω and ε1,2 − h̄ω are close to
the conduction and valence bands, respectively. The sites
are coupled to each other due to the intersite interac-
tion Δ of Eq.(2), and interact with the EM field due
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FIGURE 2. Two-site molecular bridge. The sites are coupled
to each other due to intersite interaction Δ, and posses perma-
nent dipole moments D11 = −D22 ≡ D/2.

to site permanent dipole moments D11 = −D22 ≡ D/2
[1, 5] (see Sec.Model). In the limit of a small energy gap
|E2 −E1|/h̄ and weak coupling Δ/h̄,

h̄ω � |Δ| , |E2 −E1| , (8)

one can obtain the equations for the expectation values of
the molecular bridge operators, the polarization P12 and
the populations Pnn, n = 1,2 that, in turn, determine the
light-induced hole and the electron currents in the two-
site junction [16]. In particular,

dP12

dt
+ i(ω̄12 − D ·E

h̄
)P12 +

i
h̄

Δ(P11 −P22)

= −P12(ΓvL,1 +ΓcL,1 +ΓvL,2 +ΓcL,2) (9)

and

dPnn

dt
+

2

h̄
(−1)nΔImP12

= 2ΓvKn,n(1−Pnn)−2ΓcKn,nPnn (10)

Similar to Ref.[23], we define the electronic current I for
two-sites case as the rate of change of electron population
on the left of the dashed line in Fig. 2,

I =
ie
h̄

Δ(P21 −P12) =
2e
h̄

ΔImP12. (11)

The set of first order differential equations (10) and (9)
can be integrated for excitation by a rectangular pulse

[16]. In the long time limit the current approaches its
steady-state value,

ISS =
eΔ2J2

0 (z)J2
1 (z2)γ11

vR,2

Δ2J2
0 (z)+(h̄2/4)(ΓL1 +ΓR2)2

, (12)

where z = D ·E0/(h̄ω); ΓL1 = ΓvL,1 + ΓcL,1 and ΓR2 =
ΓvR,2 +ΓcR,2 denote the rates of electron transfer between
molecular state j = 1,2 and the corresponding lead, and
we used Eq.(11) and put ω̄12 = 0 for simplicity. In deriv-
ing Eq. (12), we assumed that the spectral functions of
r-th order for a given band are equal for the left and right
contacts, i.e.

γrr
cL,i = γrr

cR, j,γrr
vR,i = γrr

vL, j (13)

for i 
= j when |r| > 1, and that (as above)

γ11
vR,2 = γ−1,−1

cL,1 . (14)

In particular, as discussed before, the former assumption
is expected to hold due to symmetry in the case of broad
conduction and valance bands. When the relations given
by Eqs.(13) and (14) are realized, the rates of electron
transfer ΓL1 and ΓR2 are equal, ΓL1 = ΓR2.

The steady-state current for a two-site molecular
bridge, Eq.(12), is proportional to the square of the prod-
uct of zero- and first-order Bessel functions J0(z)J1(z2)
of different arguments z and z2 = −z/2. Consequently,
the current vanishes at zeros of both J0(z) and J1(−z/2)
(i.e. for the values of |z| = 0, 2.4, 5.52, 7.6, 8.65, ...).
Thus, the phenomenon of CDIT for a two-site molecu-
lar bridge differs qualitatively from both CDIT for a sin-
gle site bridge and the conventional CDT. In particular,
for the 2-site bridge, both the coupling of the molecular
bridge with semiconductor leads Vc(v)k j and the electron
hopping matrix element Δ are replaced through the inter-
action with the light by their effective values, Vc(v)k j →
(Vc(v)k j)e f f = J∓1(z j)Vc(v)k j and Δ → Δe f f = J0(z)Δ (see
Eq.(12)). The corresponding effective tunneling matrix
elements (Vc,vk j)e f f and Δe f f vanish at zeros of J∓1(z j)
and J0(z), respectively.

To determine the steady-state current versus z,
Eq.(12), one needs to know z-dependence of ΓL1 + ΓR2,
which requires calculation of the rates γrr

c,vK j, Eq.(5),
as functions of r, the order of the photonic replication.
Using the density of states of a 3D semiconductor, one
obtains for |r| ≥ 2

γrr
c,vKj , j =

√
|r|−1γ∓2,∓2

c,vKj , j, (15)

with which ΓR2 = ΓL1 and

ΓR2 = J2
1 (

z
2
)γ11

vR,2 +(γ22
vR,2 + γ−2,−2

cR,2 )
∞

∑
r=2

J2
r (

z
2
)
√

r−1

(16)
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FIGURE 3. Steady-state current for two-site bridge versus z,

calculated using Eqs.(12) and (16) for γ22
vR,2 + γ−2,−2

cR,2 = 10γ11
vR,2

and h̄γ11
vR,2/|Δ| = 0.054.

where we used Eqs.(4), (13) and (14). A plot of ISS versus
z is provided in Fig.3, illustrating that the steady-state
current for the two-site bridge vanishes at both the zeros
of the current corresponding to CDT and the zeros of
the induced current for a single site bridge. We note also
the qualitative difference between the currents for the
single- and the double-site bridges, originating from the
differences of the underlying electronic dynamics.

PHOTON ASSISTED CURRENT IN
MOLECULAR NANOJUNCTIONS WITH

GRAPHENE CONTACTS [25]

In the second part of our work, as a first step, we calculate
a semiclassical wave function of a doped graphene un-
der the action of EM excitation. Then we obtain Heisen-
berg equations for the second quantization operators
of graphene and calculate current through a molecular
junction with graphene electrodes using non-equilibrium
Green functions (GF). We address different cases, which
are analytically soluble, hence providing useful insights.

Calculation of Semiclassical Wave Function

The states of electrons in graphene are conveniently
described by the four-component wave functions, de-
fined on two sublattices and two valleys. Electron mo-
tion in the time-dependent EM field is described by the

2D Dirac equation [12, 13]

ih̄
∂ψ
∂ t

= [vσ̂(p̂− e
c

A)+ eϕpot ]ψ (17)

written for a single valley and for a certain direction
of spin. Here p̂ is the momentum of the quasiparticle,
v - the Fermi velocity (v ≈ 106 m/s), σ̂ - the vector of
the Pauli matrices in the sublattice space (“pseudospin”
space), A and ϕpot are vector and scalar potentials of
an EM field, respectively. Suppose a graphene film is
excited by a linearly polarized monochromatic electric
field Ex(t) = E0 cosωt that is parallel to its plane (x,y).
Then Ax = −(c/ω)E0 sinωt, Ay = Az = 0. To obtain a
semiclassical solution of Eq.(17), we use a method of
Ref. [26] (see also [27]). As a result, we get the wave
function normalized for the graphene sheet area s [25]:

ψ =
1√
s

exp(ipxx/h̄+ ipyy/h̄)exp[
i
h̄
(∓v

∫ t

0
p̄dt ′ −

−e
∫ t

0
ϕpotdt ′)]ūp± (18)

where p̄ is the normal momentum that obeys the classi-
cal equations of motion for a particle with charge −e, ac-
cording to which p̄x(t) =−(eE0/ω)sin(ωt); p̄ = p− e

c A
where p is the generalized momentum. Here slowly vary-
ing spinors ūp± are equal to

ūp±=
1√
2

(
exp(−iϕ̄/2)
±exp(iϕ̄/2)

)
, (19)

p̄ ≡ |p̄(t)|, tan ϕ̄ = p̄y/ p̄x, px = pcosϕ , py = psinϕ ,
tanϕ = py/px. In the absence of external EM field
Eqs.(18) and (19) give the exact wave function of un-
perturbated graphene [12]. Eqs.(18) and (19) show re-
markable and very simple result, according to which the
time-dependent part of the semiclassical wave function is
defined by the same formula as that for the unperturbated
system with the only difference that the generalized mo-
mentum p should be replaced by the usual momentum p̄.
The space-dependent part of the wave function remains
unchanged.

The wave function of the graphene sheet interacting
with molecular bridge Ψ may be represented as the su-
perposition of wave functions, Eqs.(18) and (19). Passing
to the second quantization, we get

Ψ = 1√
s ∑
+,−

∑
p

âp± exp[ i
h̄ pr+ i

h̄ (∓v
∫ t

0 p̄dt ′

−e
∫ t

0 ϕpotdt ′)]ūp± (20)

where âp± are annihilation operators. To obtain the
Hamiltonian in the second quantization representation,
consider an average energy of a particle with wave func-
tion ψ that is given by

∫
ψ∗Ĥψdr =ih̄

∫
ψ∗(∂ψ/∂ t)dr.
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Replacing wave functions ψ for Ψ operators and inte-
grate with respect to r, we get

Ĥ =
∫

Ψ†ĤΨdr = ∑
pσ

∑
+,−

â†
p±,σ âp±,σ [±vp̄(t)+eϕpot(t)]

(21)
where ∑σ â†

p±,σ âp±,σ = â†
p±âp±, σ = 1,2 is the "qua-

sispin" index. Using Hamiltonian, Eq.(21), we obtain the
Heisenberg equations of motion

dâp±,σ (t)
dt

=
i
h̄
[Ĥ, âp±,σ ]� i

h̄
[∓vp̄(t)−eϕpot(t)]âp±,σ (t)

(22)

Formula for the Current

Consider a spinless model for a molecular wire that
comprises one site of energy εm, positioned between ei-
ther both graphene electrodes (leads) or one graphene
and another one - a metal electrode. The corresponding
Hamiltonian is Ĥwire + Ĥleads +V̂ where the wire Hamil-
tonian is Ĥwire = εmĉ†

mĉm, ĉ†
m (ĉm) are creation (annihila-

tion) operators for electrons at the molecular wire. The
molecule-leads interaction V̂ describes electron transfer
between the molecular bridge and the right (R) and left
(L) leads that gives rise to net current in the biased junc-
tion

V̂ = ∑
+,−

∑
σ ,p∈{L,R}

(Vp±,σ ;mâ†
p±,σ ĉm +H.c.), (23)

Here H.c. denotes Hermitian conjugate. The current
from the K lead (K = L,R) can be obtained by the gener-
alization of Eq.(12.11) of Ref.[28]

IK = −2κe
h̄ ∑

+,−
∑

σ ,p∈K
Vp±,σ ;mRe[G<

m;p±,σ (t, t)] (24)

where κ = 1 for the metal electrode, and κ = 2 for
the graphene electrode that accounts for the valley de-
generacies of the quasiparticle spectrum in graphene.

G<
m;p±,σ (t, t ′) = i〈â†

p±,σ (t ′)ĉm(t)〉 denotes the lesser GF.
Calculating the latter, we get [25]

IK =
4e
h̄

∫ t

−∞
dt1 ∑

+,−
Im

∫ ∞

0

d(vp)
2π

exp[± i
h̄

eϕpot,K(t − t1)]

×ΓK
mm(±vp, t1,t)[Gr

mm(t, t1) f K(±vp)+G<
mm(t, t1)] (25)

where Gr
mm(t, t1) and G<

mm(t, t1) are the retarded
and lesser wire GFs, respectively; f K(vp±)

≡ 〈â†
p±,σ (0)âp±,σ (0)〉 =

[
1+ exp

(±vp−μK
kBT

)]−1
is

the Fermi function and μK - the chemical potential of

lead K, and

ΓK
mm(±vp, t1,t) =

s
π h̄2v2 ∑

σ∈K

∫ π

0
dθvpVp±,σ ;m(t)

×V ∗
p±,σ ;m(t1)exp[± i

h̄
v
∫ t

t1
dt ′ p̄(t ′)] (26)

is the level-width function. To proceed, we shall make
the time expansion of ΓK

mm(±vp, t1,t) into the Fourier se-
ries, and then use the Markovian approximation, consid-
ering time t − t1 ≡ τ as very short. This will also en-
able us to use the non-interacting resonant-level model
[28] for finding the time dependence of Gr

mm(t, t − τ)
and G<

mm(t, t − τ) = inm(t)exp(− i
h̄ εmτ) as functions of

t and t − τ where nm(t) is the population of molecu-
lar state m. According to the Floquet theorem [1], the
general solution of the Schrödinger equation for an elec-
tron subjected to a periodic perturbation, takes the form
ψ(t)= exp(− i

h̄ εt)ΦT (t), where ΦT (t) is a periodic func-
tion having the same period T as the perturbation, and
ε is called quasienergy. Then the expansion of function
exp[ i

h̄ v
∫ t

0 dt ′ p̄(t ′)] on the right-hand side of Eq.(18) into
the Fourier series will be as following

exp[
i
h̄

v
∫ t

0
dt ′ p̄(t ′)]= exp[

i
h̄

ε(p,θ)t]
∞

∑
l=−∞

cl(p,θ)exp(iltω)

(27)
where

cl(p,θ) =
ω
2π

∫ π
ω

− π
ω

exp[
iv
h̄

∫ t

0
p̄dt ′ − i

h̄
ε(p,θ)t − ilωt]dt

(28)
Using expansion, Eq.(27), into Eq.(26) and neglecting
fast oscillating with time t terms, we get

ΓK
mm(±vp,τ) =

s
π h̄2v2 ∑

σ∈K

∫ π

0
dθvp|Vp±,σ ;m|2

×
∞

∑
n=−∞

|cn(p,θ)|2 exp{±i[
ε(p,θ)

h̄
+nω]τ} (29)

Then going to the integration with respect to τ in Eq.(25)
and bearing in mind Eq.(29), we get

IK = 4e ∑
σ∈K

∫ π

0
dθ

∞

∑
n=−∞

[nm(t)− f K(vpn±)]

×|cn(pn±,θ)|2γ̄(n)±
GKσ ,m (30)

where we denoted

γ̄(n)±
GKσ ,m =

s
2π h̄3v2

∫ ∞

0
vpd(vp)|Vp±,σ ;m|2 ×

×δ [±(ε(p,θ)+nh̄ω)+ eϕpot,K − εm] (31)

is the spectral function for the n-th photonic replication,
δ (x) is the Dirac delta, arguments pn± are defined by
equation

ε±(p,θ) = ±(εm − eϕpot,K)−nh̄ω (32)
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and should be positive. Below we shall consider Vp±,σ ;m
not dependent on p± and quasispin σ .

Molecular bridge between graphene and
metal electrodes

Consider a specific case when the molecular bridge is
found between graphene and metal (tip) electrodes. In
that case one can use Eq.(30) for K = L:

IL = 4e ∑
σ∈K

∞

∑
n=−∞

[nm(t)− f L(vpn±)]

×
∫ π

0
dθ |cn(pn±,θ)|2γ̄(n)±

GLσ ,m (33)

If R represents the metal electrode, then

IR = 2eγRm[nm(t)− f R
p ] (34)

where 2γRm is the charge transfer rate between the molec-
ular bridge and the metallic lead. In the case under con-
sideration the equation for nm(t) becomes

dnm/dt = −IL/e− IR/e (35)

that is written as the continuity equation. Inserting
Eqs.(33) and (34) into Eq.(35), solving the latter for the
steady-state regime and substituting the solution into Eq.
(34), we get

IR = 4e∑
nσ

∫ π

0
dθ |cn(pn±,θ)|2γ̄(n)±

GLσ ,m[ f L(vpn±)− f R
p ]

(36)
for a special case

γRm/2 >> ∑σ

∞

∑
n=−∞

γ̄(n)±
GLσ ,m

∫ π
0 dθ |cn(pn±,θ)|2

Eq.(36) seems similar to that of Tien and Gordon,
Eq.(1), and generalizes it. To calculate current, we shall
use a variety of approaches.

Function exp[ i
h̄ v

∫ t
0 dt ′ p̄(t ′)] may be

written in the dimensionless form as
exp(i α

b
∫ y

0 dx
√

1+2bcosθ sinx+b2 sin2 x) where
b ≡ (eE0v/ω)/(vp) and α = (eE0v/ω)/(h̄ω) represent
the work done by the electric field during one fourth
of period weighted per unperturbated energy vp and
photon energy h̄ω , respectively; y = ωt, and we assume
eE0 > 0. If b < 1, one can use the cumulant expansion,

and we get exp[i α
b

∫ y
0 dx

√
1+2bcosθ sinx+b2 sin2 x] =

exp[G1(y) + G2(y)], where G1(y) contains only a con-
stant term and the linear with respect to y term that
describes the quasienergy weighted per photon energy
[25]. The term exp[G2(y)] can be expanded in terms of
the Bessel functions Js(zi) [29]. In case of large momenta
(far from the Dirac point), b << 1, ε(p,θ) ≈ vp, and

FIGURE 4. Current in the case of large momenta for n-
doped (μ > 0, solid) and p-doped (μ < 0, dashed) graphene
electrode as a function of applied voltage bias. |εm| = 20h̄ω ,
α = 3.

we get from Eq.(32): vpn± = ±(εm − eϕpot,K)−nh̄ω . In

that case quantities γ̄(n)±
GLσ ,m, Eq.(31), become

γ̄(n)±
GLσ ,m =

γ0

π
[± (εm − eϕpot,L)

h̄ω
−n] (37)

where γ0 = |Vp±,σ ;m|2sω/(2h̄2v2), and the expression
in the square brackets is proportional to the DOS for
graphene that is proportional to energy [12]. In the case

under consideration, |cl(p,θ)|2 = J2
l (α cosθ) [25]. The

current, Eq.(36), calculated for large momenta when α =
3, as a function of applied voltage bias is shown in Fig.4.
In our calculations temperature T = 0, and the leads
chemical potentials in the biased junction were taken to
align symmetrically with respect to the energy level εm
[30], i.e., μ + eϕ0/2 for the left lead, and μ − eϕ0/2
for the right lead (eϕ0 ≥ 0, eϕpot,(L,R) = ±eϕ0/2) where
μ = εm for both leads. Both curves of Fig.4 show pho-
ton assisted current - the steps when the potential of
the graphene electrode achieves the values correspond-
ing to integer multiples of the photon energy. The steps
are found on the background that decreases linearly for
a n-doped graphene electrode and increases linearly for
a p-doped electrode when eϕ0 increases. This is related
to the linear dependence of DOS on energy. To calculate
coefficients cl(p,θ), Eq.(28), in general case, we need
to know quasienergy ε(p,θ). The latter may be found
as zero harmonic of the Fourier cosine series of nor-
mal momentum p̄(t) on the left-hand side of Eq.(28).
Consider first limiting points θ = 0,π when the momen-
tum is parallel to the electric field. Then the quasienergy
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FIGURE 5. The logarithm of the absolute values of Fourier-
coefficients cl(p;θ = 0,π) (solid line) versus harmonic number
l for n-doped graphene contact (μ > 0) and α = 0.5, b = 1.43 >
1. For comparison we also show |Jl(α)| (dashed line). We use
the continuous variable l though l takes only the whole values.

weighted per the work done by the electric field during
one fourth of period is equal to ε̄(p;θ = 0,π)≡ ε(p;θ =
0,π)/(evE0/ω) = [1/(2πb)]

∫ π
−π dx |1±bsinx|. If b < 1,

ε̄(p;θ = 0,π) = 1/b ∼ vp like above. When b > 1,

ε̄(p;θ = 0,π) =
2

πb
[arcsin(

1

b
)+

√
1− 1

b2
] (38)

that gives for b >> 1

ε(p;θ = 0,π) =
1

π
[2α h̄ω +

(vp)2

evE0/ω
] (39)

- a quadratic dependence of ε(p;θ = 0,π) on vp for
small vp or large evE0/ω accompanied by opening the
gap 4α h̄ω

π (see Fig.6 below). This gap is different from
those predicted in Refs.[13, 31], which are induced by in-
terband transitions in an undoped graphene. In contrast, a
semiclassical approximation used in our work is correct
for doped graphene when h̄ω < 2μ [15], and as a con-
sequence, interband transitions are excluded. Therefore,
in our case the gap is induced by intraband processes.
When ε(p;θ = 0,π) is defined by Eq.(39), quantities

γ̄(n)±
GLσ ,m, Eq.(31), become γ̄(n)±

GLσ ,m = αγ0/4 that do not de-
pend on n and are proportional to α . Fig.5 shows the
logarithm of the absolute values of Fourier-coefficients
c+

l (p;θ = 0,π) for different l calculated using Eqs.(28),
(32) and (38). For comparison we also show the usual de-
pendence |cl(p;θ = 0,π)| = |Jl(α)|. One can see much
slower falling down

∣∣c+
l (p;θ = 0,π)

∣∣ with harmonics in-
dex l in comparison to the usual dependence that may be
explained by the peculiarities of the graphene spectrum.
One can show that |cl(p,θ | falls down as 1/l for b >> 1

and α << 1. Such a behaviour is due to stronly non-
linear EM response of graphene, which could also work
as a frequency multiplier [15]. Our approach enables us
to understand the origin of this non-linear response that
arises due to modification of graphene gapless spectrum
in the external EM field.

Consider now the middle point θ = π/2 when the
momentum is perpendicular to the electric field. In that
case one can show that

ε̄(p;θ = π/2) =
1

2πb

∫ π

−π
dx

√
1+b2 sin2 x =

=
2

π

√
1+b−2E[(1+b−2)−1/2] (40)

where E(x) is the complete elliptic integral of the second
kind [29]. If b � 1, ε̄(p,π/2) = 1/b like before. When
b >> 1, we get

ε(p,θ =
π
2

) =
1

π
{2α h̄ω +[

1

2
+2ln(2

√
eE0

ω p
)]

(vp)2

evE0/ω
}

(41)
where the dependence of ε(p,π/2) on p for small p
(or large eE0/v) differs from quadratic one (cf. with
Eq.(39)). Hence, the quasienergy becomes anisotropic,
however, its formation is accompanied by opening the
same dynamical gap 4α h̄ω

π as for θ = 0,π . Quasienergies
ε̄(p;θ = 0,π,π/2) defined by Eqs.(38) and (40) as func-
tions of 1/b = vp/(eE0v/ω) are shown in Fig.6. They
are equal to 2/π for zero momentum, then increase as
∼ (vp)2 for θ = 0,π , Eq.(39), and according to Eq.(41)
for θ = π/2. The law, Eq.(38), for θ = 0,π gives way to
linear one when 1/b = 1, and quasienergy for θ = π/2
also tends to linear one when 1/b >> 1 (large momenta).

CONCLUSION

In this work, we proposed viable approaches to coher-
ent control of electric transport via molecular junctions
and developed a theoretical framework to explore the
methods. Our first approach makes use of semiconduct-
ing electrodes and sub-bandgap frequencies to circum-
vent substrate-mediated processes and competing energy
transfer events. It relies on a simple and general concept,
namely the controllable photonic replication of molecu-
lar levels through interaction of the molecular permanent
dipole vector with an electromagnetic field. By explor-
ing simple, analytically soluble limits for a single and
two-site molecular bridge, we showed that, acting in con-
junction with the bias voltage, the electromagnetic field
induces unidirectional current in the junction, whose rate
is determined primarily by the bias voltage while its tem-
poral characteristics are controlled by the laser pulse. We
also predicted the phenomenon of coherent destruction
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FIGURE 6. Quasienergies ε̄(p;θ) for θ = 0,π (solid line)
and π/2 (dashed line) as functions of 1/b = pω/(eE0).

of induced tunneling, which extends the previously ob-
served effect of coherent destruction of tunnelling.

We have also proposed using graphene electrodes for
coherent control of electric transport via molecular junc-
tions. The approach is based on the excitation of dressed
states of the doped graphene with electric field, having
used unique properties of the graphene. We have calcu-
lated a semiclassical wave function of a doped graphene
under the action of EM excitation and the current through
a molecular junction with graphene electrodes using non-
equilibrium Green functions. We have shown that us-
ing graphene electrodes can essentially enhance cur-
rents evaluated at side-band energies ∼ nh̄ω in molec-
ular nanojunctions that is related to the modification of
the graphene gapless spectrum under the action of ex-
ternal EM field. We have calculated the corresponding
quasienergy spectrum that is accompanied with opening
the gap induced by intraband excitations.
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