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Interaction of intense chirped pulses with molecules in
condensed phase as electron transfer between ” movmg”
potential
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A nonperturbative analytic approach to the problem of the interaction of high-power
chirped pulses with molecular systems: the picture of "moving potentials” (J.Chem.Phys.,
109 (1998) 4523) has been generalized to different relaxation times in the ground and in
the excited electronic states. The calculation results agree qualitatively with the experi-
mental results by Shank et al. and Bardeen, Wilson et al. An electronic optical transition
induced by chirped pulses, can be considered as an electron transfer reaction between a
"moving photonic replication” and the corresponding term occuring at their instanta-
neous intersection. This clear picture explains even fine details of the behaviour of the

excited state population as a function of the chirp rate.
© 2000 Elsevier Science B.V. All rights reserved.

1. INTRODUCTION

The interaction of high-power phase-modulated (chirped) pulses with molecular sys-
tems is the topic of active recent research [1-13]. The phase structure (chirp) of the
pulse determines the temporal ordering of its different frequency components that en-
ables a controlling molecular dynamics [14]. This property of chirped pulses is essentially
enhanced by going beyond the perturbative regime due to the multiphoton processes of
exciting molecules [13,15].

The effects of varying the chirp and intensity of an ultrashort pulse exciting dye
molecules in liquid solutions have been investigated experimentally by Shank et al. {13]
and Bardeen, Wilson et al. [15]. For low-power excitation, they found that the absorption
and amount of excited state population were independent of chirp, while for high-power
excitation the authors [13,15] observed a strong chirp dependence.

The interaction of strong radiation (and especially intense chirped pulses) with large
molecules in solutions is rather complex problem. This problem involves two types of
nonperturbative interactions: light-matter and relaxation (non-Markovian) ones [16,17].
Therefore, the majority of nonperturbative light-matter descriptions was carried out by
numerical solving the corresponding sets of equations for molecular systems noncoupled
[4,13,18,19] and coupled [20,21] with a dissipative environment.

In Ref. [22] a new approach to the problem of the interaction of high-power chirped
ultrashort pulses with molecular systems has been developed: the picture of "moving
potentials”. One of the authors has considered a strongly broadened vibronic system
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with dissipation interacting with a strong chirped pulse, whose field amplitude can be
represented in the form:

B(t) = € (t)exp (i (1)), (1)

where £ (t) and ¢ (t) are real functions of time, and ¢ (¢) describes the change of the pulse
phase in a time ¢. The solution of the problem was based on the fact that the irreversible
dephasing time of the electronic transition T” for such a system was much shorter than
both the vibrational relaxation time and pulse duration ¢,, and that the pulse amplitude
£ (t) and the pulse frequency w(t) = w — %‘—t’i change only slightly during 7".

The approximation of fast electronic dephasing was used also in a simplified ap-
proach to the problem under consideration: time-dependent rate equations, developed
by Bardeen et al. [23].

Theory [22] naturally leads to the picture of “moving” potentials which are ”pho-
tonic replications” (or "dressed states”) of the ground and excited electronic states. An
electronic optical transition induced by chirped pulses, can be considered as an electron
transfer reaction between a "moving photonic replication” and the corresponding term
occurring at their instantaneous intersection.
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FIG. 1. Effective potentials corresponding to electronic states 1,2 and their “photonic repli-

cations”.
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Let us consider a molecule with two electronic states n = 1 and 2 in a solvent described
by the Hamiltonian

[3V]
~

Hy = z In) (B + Wa(Q)] (n] (

" where E, > Ey,E, is the energy of state n, W,(Q) is the adiabatic Hamiltonian of
reservoir R (the vibrational subsystems of a molecule and a solvent interacting with the
two-level electron system under consideration in state n). The molecule is affected by
electromagnetic radiation:

E(t)= ;)-E( ) exp(—iwt) + c.c. (3)
whose field amplitude is given by Eq.(1).

One can describe an electronic optical transition as an electron-transfer reaction be-
tween "photonic replication” 1’ of state 1 and state 2* (or between state 1 and "photonic
replication” 2’ of state 2) induced by the disturbance V(¢) = —Dy; - E(t)/2, where D
is the dipole moment operator of a solute molecule. The influence of the vibrational
subsystems of a molecule and a solvent on the electronic transition within the range of
definite vibronic transition 0 — & related to high frequency optically active (QOA) vibration
(= 1000 —1500cm™") can be described as a modulation of this transition by low frequency
(LF) OA vibrations {w,} {24-27]. In accordance with the Franck-Condon principle, an
optical electronic transition takes place at a fixed nuclear configuration. Therefore, the
highest probability of optical transition is near the intersection Qo of "photonic repli-
cation” and the corresponding term (see Fig.l where the generalized coordinate of the
reservoir is denoted by a (see below)) and rapidly decreases as |[Q — Qo increases (the
contact approximation). The quantity ui(Q) = W2(Q) — Wi(Q) — (W2(Q) — W1 (Q)h
is the disturbance of nuclear motion under electronic transition. Here (), = Trr(...pR,)
denotes the trace operation over the reservoir variables in the electronic state n, pgr, =
exp (—BW,) /[Trrexp(—pW,), B =1/ksT.

Electronic transition relaxation stimulated by LFOA vibrations is described by the
correlation K;(¢) = (u1(0)us(¢))1 of the corresponding vibrational disturbance with char-
acteristic attenuation time 1, [28-37]. For broad vibronic spectra satisfying the "slow

modulation” limit, we have
0-237-32 >1 . - (4)

where oy, = K, (O)I‘i‘2 is the LFOA vibration contribution to a second central moment of
an absorption spectrum. According to Refs. [36,37], the following times are characteristic

for the time evolution of the system under consideration: oy, 2 < T &« 1y, where a_';sl/ 2

*The wave function of the system can be expanded in Fourier series due to the periodic depen-
dence of the disturbance on time: ¥(z,t) = 3, ¥a(z,t) exp[—i(c + nw)t], where ¥,(z,t) is a
slowly varying function. Photonic ‘replication’ 1’ corresponds to the ground state wave function

forn=1.
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and T = (7,/03,)!/? are the times of reversible and irreversible dephasing of the electronic
transition, respectively. The characteristic frequency range of changing the optical tran-
sition probability can be evaluated as the inverse T”, i.e. (T”)~!. Thus, one can consider
T' as a time of the optical electronic transition. Therefore, the inequality 7, > T implies
that the optical transition is instantaneous and the contact approximation (at least, for
- non-modulated pulses) is correct.

However, owing to the phase modulation of the excited light pulse, the "photonic repli-
cations” move vertically due to the variation of the pulse frequency w(¢) = w— % with
the time. Accordingly, the intersection of ”photonic replication” and the corresponding
term will slide along the term (see Fig.1). If this sliding relatively slow, the electronic
transition occurs at instantaneous intersections of ”photonic replication” and the corre-
sponding term, and the contact approximation is correct. If the sliding rather fast, the
electronic transition has no time to occur at the narrow region near the instantaneous
intersection, and the contact approximation is inapplicable.

Since T can be considered as a time of an electronic transition, a criterion for the
correctness of the contact approximation in the case of phase modulated pulses can be
formulated as the following [22]:

Ot
—

T < (T)7, (:

dw ()
1

i. e. the variation of the pulse frequency in a time T’ must be smaller than the charac-
teristic frequency sange of changing the optical transition probability.

In Ref. [22] the model of the Gaussian-Markovian stochastic modulation of the optical
transition of a molecule in solution was considered. It is described by the same normalized
correlation functions determined with respect to the ground S,(t) = K:(¢t)/K,(0) and the
excited Sy(t) = Ky(t)/K2(0) electronic states, respectively: S;(t) = S2(t) = exp(—[t|/7s).
However, relaxation times of the vibrational excitation in the ground 7,; and the excited
42 electronic states of a molecule can be essentially different [8]. In addition, an inequality
Ts1 7 Ts2 provides a simple example of nonlinear solvation [38,39).

In this work the approach developed in Ref. [22], has been generalized to the case
of different correlation functions determined with respect to the ground and the excited
electronic states: S;(¢) # Sa(t). The outline of the paper is as follows. In Sec. 2 we
present equations for the populations of molecular electronic states under the action of
chirped pulses for the case of different correlation functions determined with respect to
the ground and excited electronic states. In Sec. 3 we present the calculation results,
their discussion and apply them to the experiments by Shank et al. [13] and Bardeen,
Wilson et al. [15]. In Sec.4 we summarize our results.

2. EQUATIONS FOR POPULATIONS UNDER THE ACTIONS OF
CHIRPED PULSE FOR THE CASE OF DIFFERENT CORRELATION
FUNCTIONS DETERMINED WITH RESPECT TO GROUND AND
EXCITED ELECTRONIC STATES

The equations for the populations of electronic states can be obtained by the sum-
mation of the double-sided Feynman diagrams for fast optical dephasing [40]. Damping
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is included as a random perturbation by the diffusional Markovian process with respect
to the coordinate & = —u; /% in the relevant electronic state. Then the equations for the
diagonal elements of the density matrix of the system under consideration can be written
in the form:

i (et) = A9 (@) + (-1 872 (1/2) [t Dul(E)FA (ons — w0 (¢),¢)

73
XGjj (o, tiwn —w (1), ) (6)

where _} = l, 2; A’ (wgl - W (i’) N tl) = P11 (L;ng - W (tl) 5 t') — P22 (w21 - W (fl) N t’) , W21 iS the
frequency of Franck-Condon transition 1 — 2,

P2 () = 81 (2ma2,)™? expl—a?/ (202,)] W

is the initial value of p;; (c,t) for t = 0, &; is the Kronecker delta. The Green’s function

Gij (o, tiwn —w (¥),t) = [270; (T - t')]_l/2 exp{—{(a — §owst)

— (war = w (t') = §jpwa) S; (t = t]*/ (205 (¢ = )} (8)

gives the density of the conditional probability in the electronic state ; that « takes
the value o at time ¢ if it takes the value wy — w (') at time #'. It describes the diffu-
sional Markovian process with respect to the coordinate « in the corresponding effective
parabolic potential U; (a) [22]

Uj(a) = E; + h(a— 6jwa)’ [ (2wat) (9)

characterized by the coefficient of diffusion d; = ag,'r,;l and the normalized correlation
function S; (t) = exp(—|t|/7,;). The potentials U; (a) are shown in Fig.1. Transitions
between the electronic states occur at a = wey — w (t), i.e. at instantaneous intersections
of "photonic replications” 1’ and 2’ with states 2 and 1, respectively. In Eq.(8) wsy is
the Stokes shift of the equilibrium absorption and luminescence spectra, o; (t —t') =
72, [1 - S2(t - ).

Eqs.(6) and (8) differ from the corresponding equations of Ref. [22] by different rate
of the attenuation of the correlation functions in the ground and in the excited electronic
states (7q1 # Ts2). |

The partial density matrix of the system pj; (@, t) describes the system distribution in
states 1 and 2 with a given value of & at time ¢. The complete density matrix averaged
over the stochastic process which modulates the system energy levels, is obtained by
integration of p,, (a,t) over o

(0)ii (6) = [ pss (e ) de (10)

where quantities (p);; (t) are nothing more nor less than the normalized populations of
the corresponding electronic states: (p);; (t) = nj, ma +ne =1
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Using Eqgs. (6), (7) and (8) for a = wy —w (t), we obtain an integral equation for the
quantity A’ {wy —w ('), 1'):

A(t) = éxp[~ (wa — w (£))2/ (2024)] — O (w2r) /Ot d'J (YA ()R (4,1, (11)

~ where A (t) = /2102,A’ (wy — w (t),) is a dimensionless quantity, o, (w1) is the cross
section at the maximum of the absorption band, J (t) is the power density of. the exciting
radiation, and the quantity

R (t,t) = Y (o5 (t =) foa) P expl=[w (t) —w; (L) /20, (¢ = O]} (12)

j=1

describes the contributions from induced absorption (7 = 1) and induced emission (j = 2)
to A(t). Here

LUJ‘ (t, t’) = Wy — 6j2wst + ((4) (t’) — W1 + 6]‘2w5g)5j (t - t’) (13)

are the first moments of transient absorption (j = 1) and emission (j = 2) spectra.
The origin of the term w (¢') on the right-hand side of Eq.(13) reflects the fact that the
first moments w; (¢,¢’) "feel ” the changes in the instantaneous intersections of "photonic
replications” and the corresponding terms at time moments ¢ during the relaxation to
the equilibrium values wy; — §jows; at a time moment ¢ > ¢/,

Egs.(11), (12) and (13) generalize the corresponding equations of Ref. [22] to the
case of different normalized correlation functions in the ground and the excited electronic
states.

The quantity A (t) enable us to calculate the populations of electronic states n; (¢)
and the light absorption, when the molecule is excited with strong chirped pulses. Using
Eqs.(10),(8),(7) and (6), we obtain:

n; () = 63y + (~1) cra(wn)/;J(t’)A(t’)dt' (14)

The imaginary part of the susceptibility, describing an absorption (amplification) of field
E (t), is given by [22]

N7F|D12l

Imyx (w(t),t) = A (wa1 —w (1), 1) (15)

Integral equation (11) with the quantity R’'(¢,t') determined by Egs.(12) and (13),
can be solved similar to Eq.(17) of Ref. [22].
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3. RESULTS AND DISCUSSIONS

Let us study the influence of the chirp rate on the excited state population n, after
the completion of pulse action for different correlation functions determined with respect
to the ground and the excited electronic states. The calculation results, corresponding to
Eq.(14) for a Gaussian pulse of the shape

B(t) = £ (8)exp (it (1) = Eneapl—5(6 — in)") - (16)

as a function of the linear chirp rate u (‘fi—‘f = ,ut) are shown in Fig. 2 (curve 1). For
comparison we also show the corresponding dependences na(i) when both ground and
excited states correlation functions coincide and are equal either to the correlation func-
tion of the excited state (curve 3), or to the ground state (curve 2). The equilibrium
spectra of the molecule in solution are shown in the insets to Figs. 4 and 7.

One can see that for small and moderate chirp rates the dependence n,(g) is inter-
mediate with respect to those which are determined by the dynamics in the ground or in
the excited electronic state only. However, for relatively large chirp rates the dependence
ny(p) mainly reflects the dynamics in the excited electronic state. This fact can be ex-
plained as follows. Let us suppose that 7, > t,.Then if the chirp rate || is rather large,
"photonic replication” 1’ moving vertically up or down (depending on the chirp sign) will
populate the electronic term 2, leaving behind the "population tail” (see Fig.3a). This is
due to the fact that the electronic transition occurs at the intersection of the terms. For
the same reasor, a reverse transition from 2 to 1’ is hindered. Thus, increasing |u| will
favor to populating the excited electronic state 2, therefore, an influence of the relaxation
processes in the ground electronic state on the dynamics of the system will be minimal.

0.55

0.45
N
=4
0.35
02% - 0 1

-ut/o
FIG. 2. The excited state popula.tio'; n? after the completion of the pulse action as a function
of the linear chirp rate u for different relaxation times 751 and 75 751 /t, = 3 and 752/t, = 1(1),
Ts1/tp = Taa/ty = 3 (2), To1/tp = Ts2/tp, = 1 (3). Other parameters are (w —wy) fwy = 0.5,
fiws [ (2kBT) = 2.834; 04 (w21) Jmaxtp = 2.5.
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FIG. 3. Populating the electronic term 2 from "moving photonic replication™ 1’ in the case
of (negative) chirp which is fast (a) and slow (b) with respect to vibrational relaxation.

If the chirp rate |p| is small, then a reverse transition from 2 to 1’ is not hindered.
and a role of the relaxation processes in the ground electronic state increases. A similar
discussion can bé provided for "photonic replication” 2’ and electronic term 1, with the
only difference that the "population tail” occurs in ”photonic replication™ 2.

The curves of Fig.2 can not be directly linked to the experimental data by Shank et al.
[13] (Fig.4b) because the parameter —put,/wy is proportional to parameter ®” (), used
by Shank, only for small chirp rates (see below). The point is that Shank et al. obtained
chirped pulses by changing the separation of pulse compression gratings. In the last case
parameters § and x are no longer independent parameters of a chirped pulse. They are
coupled by the formulae [13]:

8 = 2{r% + [20" (w) /7p0]"} ! (17)

i= 49" () [y + 48" (w)] (18)

where T, determines the duration of a transform limited pulse, and ®”(w) =
®" (v) [ (47?) is the phase term [13].

Fig.4a shows the calculation results of the excited state population n, as a function
of ®” (v) for the value of the parameter 70 = 11 fs used by Shank et al. and identical
correlation functions determined with respect to the excited and the ground electronic
states. The quantity o2, is evaluated from the absorption spectrum of LD690 in methanol
[41]: o9, = 546em™!. It gives a value of wy = hoay,/ (kpT') = 1420cm™! for the Stokes
shift of the equilibrium absorption and luminescence spectra in the framework of used
model. The calculated dependences n, (®” (v)) are confined to the values of an argument
[®” (v)| > 10000fs2, since our theory is correct only for pulse durations exceeding the
irreversible dephasing time of the electronic transition.
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FIG. 4. The excited state population n, after the completion of the pulse action as a func-
tion of ®”(v) for low- and high-power excitation. (a) Calculation results for initial detunings
(w — wa1)/wse = 0.21(1,5), 0(2), 0.5(3), —0.5(4); other parameters are: hw,/(2ksT) = 3.38.
0o (w21) Jmaxtp = 2.5(1 —4) and 0.1(5); (b) Experimental data for the laser dyes LD690 in
methanol and LDS750 in acetonitrile [13]. Insets to Figs. 4 and 7: equilibrium spectra of
the absorption (A) and the emission (£); the arrows show the relative positions of the initial
excitation frequency w.

One can see that curve 1 which corresponds to the experimental value of the initial
detuning (w — wy)/we = —0.2 for LD690 in methanol, is much like the corresponding
experimental data (Fig.4b). For low pulse energy (see curve 5), ny weakly depends on
chirp rate according to experiment [13].
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FIG. 5. Populating the electronic term 2 from "moving photonic replication™ 1’ for the "red”
(a,b) and "Franck-Condon” (c,d) initial excitations when chirp is negative (a,c} and positive
(b,d).

Fig.4a shows a strong dependence of the excited state population on the initial pulse
frequency w. We can compare curves 4 for the excitation at the electronic origin (the
red excitation) and 2 for the excitation at the frequency of the Franck-Condon transition
(absorption maximum) with the corresponding experimental data by Bardeen, Wilson
et al. [15]. They used intense chirped pulses for probing chemical environment of the
pH-sensitive dye SNAFL-2.

Decreasing pH strongly influenced on the redshift of the laser pulse spectrum relative
to the absorption spectrum. We consider that curve 2 approximately corresponds to the
excitation conditions for pH=9 in Ref. [15], and curve 4 - to those for pH=6. One can
compare the theoretical and experimental values of the ratio of the excited state popula-
tion ny (®”(v)) (which is proportional to the integrated luminescence, see Fig.2 of Ref.
[15]) for two values of the phase term & (v) = +10* and —10* fs2. The theoretical values
are close to the corresponding experimental data: nz (+10*) /n; (—10*) = 2 (theory. curve
4) and 1.96 (experiment, pH=6) for the initial red excitation; ny (+10%) /n, (—10*) = 1.56
(theory, curve 2) and 1.42 (experiment, pH=9) for the excitation at the maximum of the
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FIG. 6. The excited state population ng after the completion of the pulse action as a
function of " (v) for different relaxation times 7y and 7y2: 70 /t, = 2 and 72/t, = 1(1).
Ts1/tp = Ts2[tp = 2 (2), Te1/tp = Ts2/t, = 1 (3). Other parameters are (w —wa1) fws = —0.2,
ﬁ,wst/ (2/\7311) = 338; Oq ((.4.)21) Jmaxtp =2.5.

absorption spectrum. In spite of a good coincidence of the corresponding experimental
and theoretical values, this comparison is only a qualitative one. Although parameters
of the pulses used in Ref. [15] are close to those of Ref. [22] (according to our
evaluations, T, =13 fs for experiments [15]), our molecular model can be too simple
for the systems used in Ref. [15].

A larger value of the ratio ng(+10*) /n,(—10*) for the initial red excitation than
that for the initial excitation at the maximum of the absorption spectrum can be also
explained by the picture of "moving” potentials (see Fig.5). If the initial frequency is red,
the negative chirped pulse can not effectively excite electronic state 2 (Fig.5a), whereas the
positive chirped pulse will be much more effective (Fig.56). If the initial pulse frequency
corresponds to the Franck-Condon transition, the difference between excitations by the
negative (Fig.5¢c) and positive (Fig.5d) chirped pulses will be smaller.

Fig.6 illustrates the behavior of ny (®” (v)) for different correlation functions deter-
mined with respect to the ground and the excited electronic states.

Figs.7a, b depict the absorption spectrum under high-power excitation which is deter-
mined by the quantity A (see Eq.(15)), calculated by the solution of integral equation
(11), for positively chirped (PC) (¢ < 0) and negatively chirped (NC) (u > 0) pulses.
Calculation results (Fig.7a) for small initial detuning (w — ws;)/ws, close to experimen-
tal conditions [13], qualitatively agree with the experiment by Shank et al (Fig.7c).
Figs.7a, b show also a strong dependence of the absorption spectrum on the initial detun-
ings (w — wy)/ws- The NC pulse data show the gain (negative absorption) of the red
edge of the NC pulse which is in an agreement with experiment [13]. The last effect can
be also explained by the picture of moving "photonic replications” [22].

Figs.8a, b show the absorption spectrum under high-power excitation for different re-
laxation times in the ground and in the excited electronic states (curves 1). For compar-
ison we also show the corresponding dependences when both ground and excited states
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FIG. 7. The absorption spectrum under high-power excitation for positively chirped (solid
line) and negatively chirped (dashed line) pulses. (a,b) Calculations of quantity A which
determines the spectrum, for initial detunings (w — wo1)/ws: = —0.05(1,2), —0.5(3,4) and
0.5(5,6); other parameters are: fiwg/(2kpT) = 3.38, 0, (w21) Jmaxly = 2.5, 7/t = 1,
ptpfwye = —0.8(1,3,5) and 0.8(2,4,6). (c) Experimental data for LD690 in methanol using
positively chirped (®” = 10%fs?) and negatively chirped (3" = —10* fs?) pulses [13].

correlation functions coincide and are equal either to the correlation function of the
excited state (curves 3), or to the ground state (curves 2). One can see that in general
the dependence A(w(t) — w) is intermediate with respect to those which are determined
by the dynamics in the ground or in the excited electronic state only. However, the
behavior of the red edge of the NC pulse (Fig.8b) is related in the main to the dynamics
in the excited electronic state.

4. CONCLUSION

In this work we have generalized a nonperturbative analytic approach to the problem
of the interaction of high-power chirped pulses with molecular systems: the picture of
"moving potentials” [22], to different relaxation times of the vibrational excitation in the
ground 7,; and in the excited 7,; electronic states. Damping is included as a random
perturbation by the diffusional Markovian process with different coefficients of diffusion
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FIG. 8. The absorption spectrum under high-power excitation for different relaxation times
in the ground and in the excited electronic states in the case of positively (a) and negatively
(b) chirped pulses. T51/t, = 2 and To2/t, = 1(1), Ta1/tp = Te2/t, = 2 (2), Ts1/tp = To2/tp = 1
(3), (w — wz1)/wst = 0.05; other parameters are: fuws:/(2kpT) = 3.38, 04 (w21) Jmaxty = 2.5.
pty /wse = —0.8(a) and 0.8 (b).

d; = 0257'3;1 in electronic states 1 and 2. Specifically, such a generalization enables us to
study the effects of high-power chirped pulses in the systems characterized by nonlinear
solvation [38,39].

An electronic optical transition induced by chirped pulses, can be considered as an
electron transfer reaction between a "moving photonic replication” and the corresponding
term occuring at their instantaneous intersection. This clear picture explains not only
the main features of the behaviour of the excited state population as a function of the
chirp rate, but fine details of it and the behaviour for different relaxation times in the
ground and the excited electronic states as well (see Section 3).

The calculation results agree qualitatively with the experimental data of Refs. [13,13].
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