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The possibility of realizing adiabatic rapid passage (ARP) with an intense chirped-pulse excitation (a concept
well known in molecular systems) in direct-gap semiconductors is studied. Based on the semiconductor Bloch
equations, the analysis shows that, in spite of complications due to band structure, signatures of ARP accom-
panied by an intrapulse pump-dump process (IPDP) should be observable in the dependence of the carriers’
density on the chirp rate in the frequency domain. The bandgap shrinkage, which is the main many-body ef-
fect, gives the dominant contribution to the asymmetry of this dependence on the chirp sign. We show that the
bandgap shrinkage enlarges the carriers’ density and makes a major impact on the interplay of ARP with
IPDP, enhancing ARP (suppressing IPDP) for positive chirped-pulse excitation and suppressing ARP (enhanc-
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ing IPDP) for negative chirped-pulse excitation. © 2005 Optical Society of America

OCIS codes: 320.1590, 320.7130.

1. INTRODUCTION

Selective population transfer with phase-modulated
(chirped) pulses has applications in a number of areas,
such as the preparation of initial states for spectroscopy,1
optical quantum control of atoms, molecules,>® and
semiconductors’ (see Ref. 8, devoted to adiabatic popula-
tion transfer with a pair of delayed nonchirped pulses in
quantum wells, as well as Ref. 9) and Bose—Einstein
condensates.'® In this work we concentrate on generating
carriers in bulk direct-gap semiconductors, which are in-
teresting for their use in electro-optical devices. Pulse
chirping has the potential to improve and optimize all-
optical ultrafast switching.

Chirped pulses are very effective in selective popula-
tion transfer between molecular electronic states, owing
to adiabatic rapid passage (ARP)"3!71* and the intra-
pulse pump-dump process (IPDP).'>1% ARP enables us to
transfer the entire population from ground |1) to the ex-
cited |2) electronic state. IPDP creates a nonstationary
ground-state componen‘c.17

An ARP is based on a sweeping of the pulse frequency
through a resonance. The mechanism of an ARP can be
explained by avoiding the crossing of dressed (adiabatic)

states
sin 9(¢) cos Ht)
©.(6)= cos It) 1= sin H¢t) 2) M

as a function of the instantaneous laser pulse frequency
w(t).? Here, the mixing angle 9(¢) is defined (modulo 7) as
9=(1/2) arctan [U/8(¢)], where U is the Rabi frequency
and &(¢) is the frequency detuning of w(¢) with respect to
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the frequency of transition 1—2. During the excitation,
the mixing angle rotates clockwise from J(-«)=7/2 to
J(+) =0, and the composition of adiabatic states changes
accordingly. In particular, starting from state |1), the sys-
tem follows the adiabatic (dressed) state ®,(¢) adiabati-
cally and eventually ends up in state |2).® A scheme based
on ARP is robust, since it is insensitive to pulse area and
the precise location of the resonance. Therefore it has
many uses, including the preparation of entangled
states and initial states for Bose—Einstein
condensates.°

In the wave-packet picture, IPDP can be explained as
follows. The first field interaction places amplitude on the
S; excited state (pump) (Fig. 1). This amplitude starts to
slide down the potential energy surface. A second field in-
teraction can either bring more amplitude up, creating a
population in the excited state, or bring the amplitude
from the first field interaction back down to S, creating a
displaced hole in the ground electronic state (dump).
Since the wave packet on S; is moving from higher optical
frequencies to lower, the ground-state population in-
creases for excitation by negatively chirped (NC) pulses.
Thus a NC pulse creates a nonstationary ground-state
component, whereas a positively chirped (PC) pulse dis-
criminates against it.16

ARP in molecules in solution were studied for a two-
state electronic system in Refs. 13, 14, and 19 and for a
stimulated Raman adiabatic passage configuration in Ref.
20. It was shown in Ref. 13 that relaxation does not
hinder coherent population transfer by ARP for PC pulses
and moderate detunings of the central pulse frequency

© 2005 Optical Society of America
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Fig. 1. Diagrams of the intrapulse pump-dump process for NC
and PC pulse excitation. The time of the interaction of the ex-
cited molecule with light (7)) shortens for PC excitation with re-
spect to that for NC excitation. We used designations of the time
arguments in accordance with the double-sided Feynman dia-
grams describing the intrapulse pump-dump process (see Fig. 6
of Ref. 13).

with respect to the frequency of the Franck—Condon tran-
sition 1— 2. Moreover, under these conditions the relax-
ation favors a more-efficient population transfer with re-
spect to the system with frozen nuclear motion (without
relaxation). Such behavior was explained in Ref. 14 by the
interplay of ARP with IPDP. The point is that the main
adiabatic criterion, |dw(¢)/dt|<|U|?, which is related to
the absence of nonadiabatic transitions between dressed
states Eq. (1), does not mean a total population transfer
between unperturbated states |1) and |2) (also known as
the diabatic states). If a transition starts or ends near the
avoided crossing where a dressed (adiabatic) state is a su-
perposition of diabatic states, total population transfer
does not occur. When the system remains at the avoided
crossing, the activation of IPDP is implied. Therefore, to
realize total population transfer, in addition to the main
adiabatic criterion, a transition must start and end far
from resonance (the “second condition to the adiabatic cri-
terion” in terms of Ref. 14); otherwise, only signatures of
ARP occur. In particular, a PC pulse excitation is favor-
able for the fulfillment of the second condition to the adia-
batic criterion (see Fig. 1 and the corresponding discus-
sion above).

Optical excitation of direct-gap semiconductors has
some similarities to optical transitions in molecules.
First, the Franck—Condon principle in molecules is simi-
lar to the momentum conservation in direct semiconduc-
tors. Second, in the absence of relaxation and the Cou-
lomb carriers’ interactions (in semiconductors), the Bloch
equations for both the molecular system13 and the direct-
gap semiconductor??? describe an ensemble of indepen-
dent two-level systems with different transition frequen-
cies corresponding to a pure inhomogeneously broadened
optical transition. By this means one would expect the ef-
fective control of direct semiconductors using intense
chirped pulses from the analogy with molecules.

At the same time, the number of optically generated
carriers in a semiconductor is limited by the number of
quantum states in the range covered by the spectrum of
the exciting pulse (the Pauli exclusion principle). This
means that the total population transfer to the conduc-
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tance band is impossible. Therefore one must keep in
mind that the realization of ARP is possible for the quan-
tum transitions only in the excitation region. There are
complications owing to band structure in semiconductors
as well. Two regions of the avoided crossing of dressed
states in momentum space exist and are a limited dis-
tance apart. It affects the passage of a system through
resonance. In addition, the optical excitation of semicon-
ductors is related to Coulomb electron-hole interactions,
the excitation of the partially excited states when the cre-
ation of an electron (hole) in the k state is not accompa-
nied by creating a hole (electron) in the same state,? re-
laxation times that depend on carriers density, etc. The
above processes do not occur in molecular systems.

In the present work, we intend to clarify the following
issues: Is it possible to realize an analogy to ARP for
direct-gap semiconductors excited with strong chirped
pulses? What is the interplay of ARP with IPDP for such
systems? What is the role of many-body effects in the ex-
citations under discussion?

Some of the preliminary results in controlling carrier
generation in bulk direct-gap semiconductors by intense
ultrashort chirped pulses are presented in conference
proceedings.?* Here we give a full account of this study
with essentially new results.

The outline of the paper is as follows. In Section 2 we
present the Bloch equations for a semiconductor with a
direct interband optical transition under the action of
chirped pulses. In Subsection 2A we describe approxima-
tions for calculating scattering terms, the calculation of
which is carried out in Appendices A and B. In Section 3
we solve semiconductor Bloch equations for the total
model, which takes into account both the relaxations re-
lated to carrier—carrier and carrier—phonon scatterings,
and the many-body effects: the bandgap renormalization
and Coulomb electron-hole correlations. In Section 4 we
formulate a number of approaches to this model. In Sec-
tion 5 we present the calculation results, analyze the
physics that underly the behavior of the approaches to the
total model, and compare their behavior with that of the
total model. Comparison of the behaviors of different
models enables us to study the influence of relaxation and
many-body effects on the chirped-pulse control of carriers.
In Section 6, by analogy with the time-dependent, light-
induced potentials for molecules,?® we introduce the time-
dependent "dressed” states and analyze the time evolu-
tion of the weighted nonequilibrium distribution
functions. In Subsection 6.1, using the picture of time-
dependent renormalized dispersion, we analyze the band-
gap renormalization influence on the effective spectral
bandwidth of an exciting pulse and the carriers’ density
value. In Section 7 we summarize our results. In the ap-
pendices we present auxiliary calculations.

2. BASIC EQUATIONS

Let us consider a semiconductor with a direct interband
optical transition. The semiconductor is affected by a
phase-modulated pulse of carrier frequency w:
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1
Et)=EW@) +EV(@) = Eg(t)exp[— iot +i¢g(t)] +c.c.,

(2)

where £(¢) and ¢(¢) are the real functions of time and ¢()
describes the change of the pulse phase in time ¢. The in-
stantaneous pulse frequency is w(¢)=w-de(t)/dt.

We describe the ultrafast optical excitation of a semi-
conductor in the resonance approximation by semiconduc-
tor Bloch equations®®21?327 for the distribution functions
of electrons, Fy, and holes, Fﬁ, and the positive-frequency
component of polarization Py (¢)=Py(¢)exp{—i[wt—o(t)]}.
Switching to the system that rotates with instantaneous
frequency w(t), Py(t)=Py(t)exp{i[wt-¢(t)]}, we obtain
equations for the quantities, which slowly vary with time
during the period of a light wave

dFs dFe

k *
— =—Im(UyP — 3
" m(Uy, k)+< & )Scat, (3)

k Ax(2)P, iU F¢ —F!
_ t + — 1_ _
at iA(¢)Py 9 k( k )

dpP
+(—“) , @
dt scat
where c=e,h;
E, ¢ de(t) €
g k ® k
A=) -—-—=A¢g———-—, 5
k() = o(t) P R Ta (5)

where Ag=w-E,/# is the detuning of the carrier pulse fre-
quency o with respect to the semiconductor optical gap
E /h; = 62+A6k and €2= 626 + egh =#2k%/2m, are the
renormalized and kinetic energies, respectively, of an
electron-hole pair in a semiconductor with reduced mass
my=momp/(mo+my); e =h%k2/2m, are the kinetic ener-
gies of the carriers; Ae,=Aecy+Aesx i;

Aecn= 2, [V¥(q) - V(g)] (6)
q#0
is the Debye shift, or the so-called Coulomb-hole self-
energy;
Aesxi == 2 V(@) (Flapq + Flg) (7)
q
is the screened-exchange shift?; and
d., &)
3

Uk =

2
+ EE V(k - k'|)Py (8)

k'

is the generalized Rabi frequency. Here V(q)
=4me®/L3¢yq®> and V°(q) are unscreened and screened
Coulomb potentials, respectively [the formula for V*(q) is
given below]; e is the value of the electron charge, L? is
the volume; ¢, is the static dielectric constant of the semi-
conductor; and d,, is the matrix element of the dipole mo-
ment. Following Ref. 28, we take into account the depen-
dence of the matrix element of the dipole moment on the
carrier energy due to the nonparabolicity of the band
structure:
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d., (k)= )
1+ exp[(ex — €.)/hA,]
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where €,=270 meV and #%A.=1.05 meV for bulk GaAs.
Such a dependence imposes the limitation on the energy
of the carriers’ excitation. The quantities (dPy/d¢)y.q; and
(dF}/dt)seay are the carrier—carrier and carrier—phonon
scattering terms, respectively. It is worth noting that Eqgs.
(3), (4), and (6)—(8) are essentially a Hartree—Fock ap-
proximation, improved to account for quasi-static screen-
ing. Owing to the short exciting pulse duration ¢,
~100 fs, we neglect radiative recombination in Eqs. (3)
and (4).

The formulas for quantities V*(g), (dPy/dt)sq; and
(dFy/dt)scay depend on the time interval under
discussion.”®?3% We shall restrict our consideration to
times longer than the reciprocal plasma frequency w}_)ll,
which is approximately equal to the time required for the
buildup of the screening. In this case, one can use the in-
stantaneous quasi-static plasmon-pole approximation for

screened Coulomb potential Vs(q)31733’23:
2 -1
Vi(g)=Vig)| 1+ | o 00
Q>+ CK2< )
4mrwpl
where
) 47T(e2/eo)( j*x . fw dth) ”
K'=——F—5"|m, k+my k| 11
W2 0 0
wil =4me’n /(m,€), (12)
n.=2L73> F%. (13)
k

It is noteworthy that charge neutrality n,(¢t)=n,(¢)=n(¢)
holds owing to pair excitation (deexcitation) by light.
Here, the carrier density n,, the screening wavenumber «
(see Ref. 34), and the plasma frequency, w, depend on
time, and C=4.

For example, for GaAs (m,=0.05627my; m is the elec-
tron mass in a vacuum), the reciprocal plasma frequency
w;}l ranges from 40 to 13 fs when the carrier density n
ranges from 10'7 to 1018 cm=3. The greater the density,
the smaller the corresponding time, since w; depends on
the carrier density. Since n>10'® cm~3 during the main
part of the exciting pulse in our calculations (see Section
5), our consideration is undoubtedly correct for ¢ >40 fs. It
stands to reason that the corresponding time increases for
smaller densities. However, in the last case, the charac-
teristic times of the carrier—carrier relaxations and the
buildup of the screening become larger than the exciting
pulse duration ¢,~100 fs. Therefore, for small densities,
the influence of the processes under discussion on the car-
rier kinetics is of minor importance.

For times longer than the reciprocal plasma frequency
w;ﬂl, the scattering terms (dPy/dt)seq; and (dF}/dt)ge; can
be described in the framework of the Boltzmann
equation35’21’36’37 [see Eqgs. (A1) of Appendix Al.
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A full kinetic treatment with scattering terms deter-
mined by the Boltzmann equation is numerically too de-
manding. Therefore we employ an approximation that
correctly describes the scattering terms’ behavior with
density and temperature. In the case that distribution
functions Fy, are different from quasi-equilibrium Fermi
distributions £ u.(¢),T(¢)], but not by much, one can lin-
earize the scattering terms (dPy/d¢)sea; and (dFy/dé)scat
with respect to the deviation &Fy=F —filu.(t),T(t)]. In
particular, the linearization is favored by the high densi-
ties and, consequently, the high scattering rates. The
quasi-equilibrium Fermi distributions fi[u.(¢),T(¢)] are
determined by both the time-dependent chemical poten-
tials u.(¢) and the carriers’ temperature T(t).21’27’23

As to carrier—phonon scattering terms, we consider the
phonon system (of LO phonons) to be maintained at a con-
stant temperature Ty during ultrafast laser excitation ow-
ing to its large heat capacity. Substitution of (quasi)equi-
librium distribution functions for carriers and LO
phonons, whose temperatures are different, into the right-
hand side of Eq. (A1) of Appendix A, results in the term
(dFy/ dt)((:(_)l))h, which describes the energy transfer between
carriers and the LLO phonon system (see Appendix B). Su-
perscript 0 means that (dFy/ dt)io)h is the zero-order term
with respect to 6Fy.

The rigorously linearized scattering terms ~dFj, also
contain nondiagonal terms in Kk.21,30.38 Neglecting the
nondiagonal terms results in a relaxation-time

P

approximat10n21,35,3g
(de(> (de(><0> N
3 scat ) E c-ph B <Fk>{ k™ fk[lu’c(t),T(t)]}’
(14)
() woor 1
dt Scat__<7k> o ( 5)
where (I'¢") and
(no) = (T +(T1y)/2 16)

are the relaxation rates related to relaxation of the carri-
ers’ distribution functions and polarization, respectively.
As a consequence of carrier conservation, parameters I“f(’h
have to be k independent.21 Therefore we shall use relax-
ation rates averaged over quasi-equilibrium distributions
(the notation (---)). The quantities (I';,) are equal to

(Tg) =Ty + (T ™) + Ty,

(TR = (PR 4 (Phee) 4 (riPhy, (17)

where e—e, h-h, e-h, and c—ph correspond to the
electron—electron, hole-hole, electron—hole, and carrier—
phonon scattering, respectively. Calculation of scattering
terms (dFy/ dt)i(_);h, Ty, (I‘f;h>, and <F1e(_ph) is carried out
in Appendices A and B.
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3. NUMERICAL SOLUTION OF COUPLED
DIFFERENTIAL EQUATIONS

We solve the coupled equations [Egs.(3) and (4) I]for the
initial values of the carriers’ density n,=n;=0, tempera-
ture T=T,=300 °K, and polarization Py =0. The scatter-
ing terms (dPy/d¢)seq; and (dF}/de)seqt are determined by
Eqgs. (14)-(17).

We used Egs. (8) and (10)—(13) for the calculation of the
generalized Rabi frequency, Uy, Egs. (6), (7), and (5) for
the calculation of Ay(#), and Eqgs. (11), (B4), and (B5) for
the calculation of carrier—phonon scattering term
(dFy/ dt)ff)h. Relaxation rates (I'y) and () are defined by
the quantities (I'y, %), (I f;"h), and (Ff(‘ph). The last are de-
termined by the corresponding equations in Appendices A
and B.

We integrated Eqs. (3) and (4) by the Runge—Kutta
method. We calculated quasi-equilibrium Fermi distribu-
tions, fil u.(t),T(¢)], by nonequilibrium distribution func-
tions of electrons, Fy and holes, Fﬁ, found at the previous
time step, using Eq. (13) for the carrier density n(¢) and
the formula for the total kinetic-energy density

(€xin) = 2L, €FF.. (18)
k,c

As a first step, we evaluated the carriers’ temperature
T(t) by Eqgs. (B10) and (B13) of Ref. 21, linking (€;,) and
temperature. Then, using n(¢) and T'(¢), we calculated the
chemical potentials, u,, from Eq. (B9) of Ref. 21

4. APPROXIMATE MODELS

The solutions corresponding to Egs. (3), (4), and (6)—(8)
are termed “the total model” for short, bearing in mind
that they take into account the relaxations related to
carrier—carrier and to carrier—phonon scatterings, and
the many-body effects: the bandgap renormalization [see
Egs. (6) and (7)] and Coulomb electron—hole correlations
[the second term on the right-hand side of Eq. (8)]. In this
section we describe a number of approaches to the total
model.

A. Free-Carrier Model
For pulses much shorter than the characteristic relax-
ation times of the system, one can ignore the scattering
terms (dF}/dt)geqs and (dPy/dt)geq; on the right-hand side
of Egs. (38) and (4). If, in addition, one neglects the band-
gap renormalization (Ag,=0) and Coulomb electron—hole
correlations [Ug=d E(t)/h], one arrives at the free-
carrier model. In this case, our system can be described as
an ensemble of independent two-level systems with differ-
ent transition frequencies corresponding to a pure inho-
mogeneously broadened interband transition. In this situ-
ation, Eqgs. (3) and (4) can be integrated independently for
each k. Solutions of the resulting undamped equations
are interesting from the point of view of increasing the
possible number of carriers due to coherent effects, as
these solutions ignore all the irreversible relaxations that
destroy coherence.

An analytic solution of the resulting undamped equa-
tions for a chirped pulse of special shape exists®®*0 (see
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Appendix C). The corresponding solution for n(x») [see Eq.
(C2) of Appendix C] is symmetric with respect to the sign
of the chirp.

B. Solely Relaxation Model

If one neglects the bandgap renormalization and Coulomb
electron-hole correlations (Ag,=0 and Uy=d.E(t)/h) in
the total model, one arrives at the solely relaxation model.
Comparisons between the solely relaxation model behav-
ior and those of the free-carrier and total models will en-
able us to study the influence of the relaxation and many-
body effects, respectively, on the chirped-pulse control of
carriers.

C. Partial Many Body Effects Model

The many-body effects include both the bandgap renor-
malization (diagonal effect) and Coulomb electron—hole
correlations. If one neglects these correlations in the total
model [Ux=d.E(t)/h], one arrives at the partial many-
body effects model, including only the bandgap renormal-
ization. It should be emphasized that the partial many-
body effects model does take into account the relaxation
effects described by scattering terms (dF}/d¢)s.,; and
(dPy/dt)geq;- Therefore comparisons between the last
model behavior and that of the total model will enable us
to study separately the influence of the bandgap renor-
malization and Coulomb electron—hole correlations on the
chirped-pulse control of carriers.

5. RESULTS AND DISCUSSION

We consider linear chirped pulses of the form
. 1 2 _ - 2
E(t)explie(t)]= & exp| - 5(5 —iw)t-t)”|. (19)

If chirped pulses are obtained by changing the separation
of pulse-compression gratings, the parameters § and u
are determined by the formulas'®1?

e B0
£
[}
g 404
=]
=
8 20
Z |
<€
0 : o
-200 -100 0 100 200
hv—Eg, meV

Fig. 2. Continuum part of the bandgap absorption spectrum in
an unexcited sample (solid curve), calculated by the Elliott
formula,??", together with exciting pulse spectra for different
detunings of the carrier pulse frequency, w, with respect to the
semiconductor optical gap %A(=fw-E,=0 (dashed curve), 80
(dashed—dotted curve) and 140.4 (dotted curve) meV. The Elliott
formula is adjusted for the dipole moment dependence on the car-
rier energy [Eq. (9)].

Vol. 22, No. 12/December 2005/J. Opt. Soc. Am. B 2719

w

n, 10" em?

n, 10" cm’®

n, 10 cm?®

()

© & o o

T2 0 % 4
@'(v), 10* 1

Fig. 3. Excited carrier densities n after the completion of the
pulse action as functions of ®”(v) for different detunings (a) #i4,
=0, (b) 80, and (c) 140.4 meV. T, total model; F, free-carrier model;
R, solely relaxation model; S, simplified relaxation model®* (I i)
=(I'}y=17 ps~! adjusted for many-body effects (see text); P, par-
tial many-body effects model.

=B+ [OHR, == ()7 + D)
(20)

where 7y=t,0/(2 Vm),tpo is the pulse duration of the cor-
responding  transform-limited pulse, and ®"(w)
=®"(v)/(472), ®"(v) the chirp rate in the frequency do-
main. In addition to ¢, the transform-limited pulse is
characterized by the dimensionless pulse area S,
=1/, dE@)dt =d Eo[D"(w)=0]7o\27/h. The pulse
chirping does not change a pulse spectrum and its energy;
it stretches only a pulse and reduces its peak intensity.
All calculations were performed for an optically thin
bulk sample of GaAs at room temperature for ¢,o=13 fs
and Sy=1.57 and different detunings of the carrier-pulse
energy fiw with respect to the semiconductor optical gap
E,: 1A(=0, 80, and 140.4 meV. The continuum part of the
bandgap-absorption spectrum in such a sample when it is
unexcited is shown in Fig. 2 along with exciting pulse
spectra for the detunings listed. It is noteworthy that the
used pulse parameters correspond to moderately strong
fields. For example, &£,=15X10°V/ecm for |P"(v)|
=10* fs. The values of the GaAs parameters were taken
from Refs. 2522 (my is the electron mass in vacuum):

m, effective electron mass 0.067m,
my, effective hole mass 0.247m,
E, bandgap 1.519 eV

dey transition dipole moment 25.0 X 1078 CGSE
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€ static electric constant 12.3
fray LO phonon energy 36 meV
a Frohlich constant 0.069

Figure 3 shows the excited carrier density after the
completion of the pulse action as a function of ®”(v). The
calculated dependences n[®"(v)] are confined to the val-
ues of an argument |®”(»)|>5000 fs?, since our consider-
ation is correct for times larger than the reciprocal
plasma frequency. One can see that with a rise in the ab-
solute value of ®"(v) in the limit of |®”(v)|<10% fs2, the
carrier density n increases for all the models and detun-
ings. For larger values of |®”(v)|>10* fs2, one can observe
smooth variations of n.

Curves F for the free-carrier model are symmetrical
with respect to the chirp sign. For other models, n de-
pends on the chirp sign (curves T, R, and P). Figure 3
shows that the larger the frequency detuning Aj is, the
larger the asymmetry of carrier-density dependence on
the chirp sign is. The carriers’ densities n are larger for
positive ®"(v) than those for negative ®"(v) of the same
absolute value |®"(v)|.

Including relaxation in the solely relaxation model
(curves R) results in diminishing n relative to the free-
carrier model (curves F). This diminishing depends on the
frequency detuning A. The larger the frequency detuning
Ay is, the larger the influence of relaxation on the excited
carriers’ density is. This last effect also depends on the
chirp sign and therefore contributes to the asymmetry in
the corresponding curves.

Including many-body effects in the total (curves T) and
partial many-body effects (curves P) model enlarges the
excited carrier densities in comparison with the solely re-
laxation model (curves R). This increase is largest for
small detunings (Ay=0, near the band edge) [Fig. 3(a)]
and diminishes when the excitation frequency is well
above the bandgap (AA(y=140.4 meV) [Fig. 3(c)]. It results
in the largest values of n, which correspond to the total
model when Ay=0, and the free-carrier model when #A,
=140.4 meV. In addition, the many-body effects contrib-
ute to the asymmetry of the carrier densities’ dependence
on the chirp sign. The densities are larger for positive
chirp.

Furthermore, curves P are very close to the correspond-
ing curves T when the carrier frequency is above the band
gap [Figs. 3(b) and 3(c)]. Curves T are slightly higher than
corresponding curves P for small detunings (Ay=0, near
the band edge) [Fig. 3(a)l, which can be explained by Cou-
lomb enhancement.” As a matter of fact, Coulomb
electron—hole correlations are of secondary importance in
the case under consideration. It means that the partial
many-body effects model would suffice to describe our
simulation results.

A. Adiabatic Criterion in the Free-Carrier Model

To understand the behavior shown in Fig. 3, we shall first
discuss the free-carrier model. This is an ensemble of in-
dependent two-level systems with different transition fre-
quencies corresponding to a purely inhomogeneous broad-
ened interband transition. We shall consider strongly
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chirped pulses when the pulse duration is much longer
than that of the transform-limited one. Then (see Ref. 41)

|@"(w)| > 7. (21)

For these conditions, the main adiabatic criterion for a
two-level system for resonance interaction® is the follow-
ing:

dw_(t) <|Ux(®)]? (22)
dt K

For linear chirped pulses determined by Egs. (19) and
(20), we obtain from Eq. (22)

i
Sy > V2. (23)

The value of Sy=1.57 used in our calculations exceeds the
right-hand side of Eq. (23), but not by much. By this
means, increasing n, shown in Fig. 3 for the free-carrier
model in the region of |®”(v)| < 10% fs2, can be explained by
signatures of ARP, bearing in mind a sweeping of the
pulse frequency through a resonance for quantum transi-
tions in the excitation region (see Fig. 2). The interplay of
ARP with IPDP will be discussed in Section 6.

According to Eq. (23), the main adiabatic criterion for
the excitation of the free-carrier model with strongly
chirped pulses is determined only by the area of the
transform-limited pulse and does not depend on the phase
term ®"(w). The point is that both the chirp rate and the
square of the Rabi frequency decrease as 1/|®"(w)| under
the conditions considered [see Eqs. (19)—(21)]. Therefore
the fulfillment of inequality (22) is not affected by ®"(w).

B. Signatures of ARP in the Solely Relaxation, Partial
Many-Body Effects, and Total Models

According to Ref. 14, relaxation does not break the adia-
baticity of a process for strong interaction when the Rabi
frequency exceeds the reciprocal irreversible dephasing
time. Although this condition has been obtained for a mo-
lecular system, from the physical standpoint it must also
be satisfied in our case, i.e.,

|Ux(®)] = (%) (24)

For linear strongly chirped pulses determined by Egs.
(19)-(21), we obtain by Eq. (24)

2 1/2
So{m] > (). (25)

For Sy=1.57 and |®"(v)| =10% fs2, the left-hand side of Eq.
(25) is about 1/10 fs~!, more than the value of the relax-
ation rate for polarization (7). This means the conserva-
tion of the ARP signatures for all the models that take re-
laxation into account, i.e., the solely relaxation, partial
many-body effects and total models, when |®"(v)|
=10% fs2. The latter explains the behavior of the depen-
dences n[®"(v)] in Fig. 3 for these models, which is simi-
lar to that of the free-carrier model in the region |®"(v)
=<10* fs?, at least for positive chirps. For larger values of
|®"(v)| >10% £s?, inequality (25) breaks down. Under these
conditions, a coherent ARP signature gives way to an in-
coherent behavior.
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Fig. 4. (a) Relaxation rates [(yy) (A), (Ff’{'e>+(Ff;h> (B), (Fﬂ'h>
+(I'1¢) (C), (I'$™PY) (D) and (IEPM) (B)], (b) carrier density, and (c)
carrier temperature as functions of time for PC [left column,
®"(v)=10* fs?] and NC [right column, ®"(v)=-10* fs?] excitation.
Detuning is #Ay=140.4 meV. The exciting pulse shape [£(¢)/&y]?
is also shown at each graph (dotted curves).

Since the adiabatic criterion for all the models, taking
into account relaxation, depends on () [see Egs. (24) and
(25)], we show in Fig. 4(a) time behaviors of relaxation
rates for the total model when chirp rates in the fre-
quency domain are equal to ®"(v)==10* fs2 for PC and
NC pulses, respectively. By virtue of the fact that relax-
ation parameters in our approximation depend on the car-
rier density n and their temperature T [see Egs.
(A11)—(A14)], we show in Figs. 4(b) and 4(c) n(¢) and T'(¢),
respectively, as functions of time as well. One can see
that, at the beginning of the exciting pulse, relaxation
rates {(yy), <Ff{"e>+(Ff{‘h>, and <Fﬂ"h>+(Fﬁ"e> increase over
time owing to the increase of the carrier density and then
tend toward constant values. The average values of ()
over the pulse are close to that used previously for the
simplified relaxation model?* when (de(/dt)i(i) ,=0 and
<Ff()=(F}ﬁ>=(yk)=const= 17 ps~L. It is noteworthy that the
dependence n[®"(v)], calculated for the simplified relax-
ation model?* adjusted for the many-body effects, is very
close to that of the total model (see curves T and S of Figs.
3(b) and 3(c)).

6. TIME EVOLUTION OF NONEQUILIBRIUM
DISTRIBUTION FUNCTIONS: TIME-
DEPENDENT QUASI-PARTICLE (“DRESSED”
ELECTRONS AND HOLES) DISPERSION

We have explained the increasing n, shown in Fig. 3, for
the solely relaxation, partial many-body effects, and total
models in the region of |®"(v)|<10% fs? via signatures of
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ARP. In addition, Fig. 3 shows that a PC pulse is more ef-
fective for generating electron—hole pairs in these models
than a NC pulse. To understand this behavior, we shall
consider the second condition to the adiabatic criterion in
terms of Ref. 14. To achieve a total population transfer, a
transition must start and end far from resonance to avoid
IPDP.'51® Ty clarify to what extent the last condition is
satisfied for interband transitions in direct semiconduc-
tors, we shall consider the time behavior of nonequilib-
rium distribution functions for PC and NC excitations.

Since, for the isotropic model, n.=2L73%,F}
=(1/7%) [ k?F5dk, Fig. 5 presents the time evolution of
the weighted nonequilibrium distribution functions,
kZF;’(’h(t), calculated by solving coupled differential equa-
tions (3) and (4) for the total model when ®"(v)
=+10*fs?. In addition, Fig. 5 shows renormalized elec-
tron energies corresponding to the conduction band

ﬁZ 2
4= —— = 2 V(@) Fig (26)
2m, 4
and the photonic replication of the valence band
h2k?
=) - (Bg+ M) = -— + 2 Vi(@)F g (27)
th q

An external electromagnetic field gives rise to interaction
between states determined by Eqgs. (26) and (27) and, as a
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Fig. 5. Energies {left axis; ef;md, dashed—dotted line; €, dotted
curve, dressed states [Eq. (28)] E,, solid curve and E,, dashed
curve} and the weighted nonequilibrium distribution functions
(populations) [right axis; (kap)?Fg, solid curve and (kag)?FL,
dashed curve) as functions of the wave number %k at the (a) be-
ginning, (b) middle, and (c) end of the exciting pulse for positive
(left column, ®"(r)=10*fs2) and negative (right column, ®"(v)
=-10% fs?) chirp. The parameters are identical to those of Fig. 4.
Inset, the square of electric field amplitude [£(¢)/&,]? of the excit-
ing pulse in relative units. The arrows show the instants of time
corresponding to (a), (b), and (c).
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consequence, to the time-dependent dressed states with
energies

1
Eiot) = 5{(4:“‘1 + &) T AIAL®) +|UL21VH,  (28)

cond

where quantity AAy(¢)=¢€.— "¢ was determined by Eg.
(5). The states, the dispersion of which is described by Eq.
(28), are a generalization of the dressed states introduced
in Ref. 42 (see also Refs. 43 and 44) to the time-dependent
quasi-particles (dressed electrons and holes).

Let us compare the left and right columns of Fig. 5 for
PC and NC excitation, respectively. One can see that, at
the beginning and the middle of the exciting pulse (Figs.
5(a) and 5(b)), the weighted nonequilibrium distribution
functions kzFf(’h(t) are more localized near the avoided
crossing for the NC excitation than the PC excitation.
This means that the second condition of the adiabatic cri-
terion is better satisfied for PC excitation than for NC ex-
citation. In other words, the signatures of ARP under PC
excitation are stronger (IPDP is minimal). This explains
the dependence of n on the chirp sign observed in Fig. 3.

Figure 5 shows that the second condition of the adia-
batic criterion is not well satisfied for both chirps, since
functions kQF‘f(’h(t) are situated not far from the avoided
crossing during the pulse action, and IPDP occurs. The
point is that the exciting pulse spectrum is limited and is
narrower than the transition bandwidth in our simula-
tions (see Fig. 2). In addition, there are two regions of the
avoided crossing in the momentum space that are a lim-
ited distance apart. By this means, the population trans-
fer for |®”(v)|<10% fs2, shown in Fig. 3, can be explained
by the interplay of ARP with IPDP. However, the signa-
tures of ARP under PC excitation are stronger than those
for NC excitation. Correspondingly, the signatures of
IPDP under NC excitation are stronger than those for PC
excitation.

A. Dependence of Distribution-Function Localization on
Chirp Sign

Figure 5 shows that the distribution functions kZngh(t)
are more localized near the avoided crossing for NC exci-
tation than those for PC excitation. Such behavior may be
attributed to both relaxation and bandgap shrinkage dur-
ing the excited pulse action.

The relaxation effects are similar to those in molecular
systems (see Section 1 and Fig. 1). Consider an excitation
with positive detuning Ay>0 of the carrier pulse fre-
quency o with respect to the semiconductor optical gap
E//f (Fig. 2). In the wave-packet picture, the field inter-
action places amplitudes on the conduction band (Fig. 5).
These amplitudes start to slide down the band. Since the
wave packets on the conduction band move from higher
optical frequencies to lower optical frequencies, they fol-
low the avoided crossing between the conduction band
and the photonic replication of the valence band for NC
excitation, inducing IPDP, and “run away” from the
avoided crossing for PC excitation, suppressing IPDP.
This explains the asymmetry of the dependence of n on
the chirp sign, observed in Fig. 3, especially for the solely
relaxation model (curves R), which increases with the fre-
quency detuning A,.

Fainberg et al.

B. Bandgap Shrinkage Contribution

However, the asymmetry under discussion is larger for
the partial many-body effects and total models (curves P
and T) than for the solely relaxation model. It means the
many-body effects also contribute to the asymmetry. Since
the partial many-body effects model would suffice to de-
scribe our simulation results (see Section 5), the main
contribution arises from the bandgap shrinkage [Eqs. (6)
and (7)]. The latter is contained in the quantity AA(¢)
[Eq. (5)], which is the difference between the renormal-
ized electron energies [Eqs. (26) and (27)]:

hAL(t) = € — &4
=(q" - ) - Aqe=[ho(t) - E, - " - €°] - Aey,
(29)

where e§’°°“d= ege= #2k2/2m, and eﬁ’” =fw(t)-Es— egh(e,(gh
=#2k%/2m;) are the related nonrenormalized energies cor-
responding to the free-carrier model. The larger the
change of Ay during the exciting pulse action

h[Ax(tp) — Ax(t)] = hlo(ty) — w(t)] - Ae(ty), (30)

the better the second condition of the adiabatic criterion
is obeyed. In this case, the distribution functions kzFi’h(t)
are less localized near the avoided crossing, and the sig-
natures of ARP are stronger. The first term on the right-
hand side of Eq. (30) is determined by the spectral band-
width of the exciting pulse. This term is positive for PC
excitation and negative for NC excitation, whereas the
second term —Ae(ty) (the bandgap shrinkage) is positive.
According to the estimations in Appendix D, the bandgap
shrinkage reduces the semiconductor optical gap by
Ae(t) =-41 meV during pulse action. This means that
the change of 1Ay is larger than the pulse bandwidth by
41 meV for PC excitation and smaller than the pulse
bandwidth by the same value for NC excitation. The
change is equivalent to the corresponding increase in the
effective spectral bandwidth of the exciting pulse for PC
excitation and to the corresponding decrease for NC exci-
tation. Hence the difference between the values of
h[Ag(t)—Ag(t;)] for PC and NC excitations comprises
2|A€(t)|=80 meV. This value is of the same order of
magnitude as the spectral bandwidth of the exciting pulse
(140 meV). As a matter of fact, the shrinkage influence on
the localization of the distribution functions, kQFle(’h(t),
must be essential. It amplifies the asymmetry in the de-
pendence of n on the chirp sign observed in Fig. 3 for the
total and partial many-body effects models (curves T and
P, respectively) with respect to the solely relaxation model
(curves R).

Figure 6 illustrates the above issue, presenting the
time evolution of the renormalized electron energies de-
fined by Eqgs. (26) and (27)) (solid curves) and the related
nonrenormalized energies corresponding to the free-
carrier model €2 and €V (dotted curves). The bandgap
shrinkage is in accordance with the estimations of Appen-
dix D. The first term on the right-hand side of Eq. (30),
ﬁ[w(tf)—w(ti)]=Eﬁ’v(tf)—eﬁ’v(ti), can be seen as the energy
difference between dotted curves representing nonrenor-
malized photonic replications of the valence band at the
end (C) and the beginning (A) of the exciting pulse. The
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Fig. 6. Time evolution of renormalized electron energies ¢
and €, (solid curves) and the corresponding nonrenormalized en-

ergies € and €} (dotted curves) for positive [left column,
®"(v)=10* fs?] and negative [right column, ®"(»)=-10% fs?] chirp
and different detunings (a) #Ay=0 and (b) 140.4 meV. The other
parameters are identical to those of Fig. 4. Inset, the square of
electric field amplitude [£()/&;]? of the exciting pulse in relative
units. The arrows show the instants of time corresponding to
curves (A), (B), and (C) for the "photonic replications” of the va-

lence band €, and ).

total right-hand side of Eq. (30), A[Ay(tp) - Ak(t;)]=[ey(tp
- ef{(ti)]+[eﬁ’°°“d— ef{"“d(tf)], is the energy difference be-
tween solid curves representing renormalized photonic
replications of the valence band at the end (C) and the be-
ginning (A) of the exciting pulse, plus a small difference
between e and the lowest solid curve representing a
renormalized conduction band at the end of the pulse.
One can easily see that the vertical distances between
renormalized photonic replications of the valence band,
€. at the beginning (A) and the end (C) of the pulse in-
crease for PC excitation (left column) and decrease for NC
excitation (right column) in comparison with those for
nonrenormalized photonic replications ey’. As indicated
above, it is equivalent to an increase in effective spectral
bandwidth of the exciting pulse for PC excitation, and the
corresponding decrease for NC excitation.

As seen in Fig. 3, including the bandgap shrinkage en-
larges the excited carrier densities, n, in comparison with
the solely relaxation model. Fig. 6 enables us to explain
this issue as well. The point is that the renormalized en-
ergies intersect at larger k than those of nonrenormalized
ones at the same instants of time (see Fig. 6). Since the
density of states is proportional to %22, the strength of a di-
pole transition between the renormalized states is larger
than that of nonrenormalized states which results in in-
creasing n. Considering the instantaneous intersection
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points for the pulse maximum (curves B), one can see that
this effect is relatively large for small detuning (Ay=0)
near the band edge (see Fig. 6(a)) and diminishes when
the excitation frequency is well above the bandgap (24
=140.4 meV) (Fig. 6(b)). It explains the largest enhance-
ment of n due to many-body effects at small detuning
(Ap=0), observed in Fig. 3(a), and the lesser enhancement
when 7A(=140.4 meV (Fig. 3(b)).

7. CONCLUSION

In this work we studied the possibility of realizing ARP,
excited with an intense short chirped pulse (a concept
well known in molecular systems), in a bulk direct-gap
semiconductor. An ultrafast laser pulse—semiconductor
interaction was described by semiconductor Bloch equa-
tions. These are essentially time-dependent Hartree—
Fock approximations, improved to account for quasi-static
screening, which is appropriate for the pulse intensities
and carrier densities we reached. The solutions corre-
sponding to these equations were termed the total model
for short, bearing in mind that they took into account
both the relaxations related to carrier—carrier and
carrier—phonon scatterings, and many-body effects—the
bandgap renormalization and Coulomb electron—hole cor-
relations. The relaxation rates in the total model were
calculated within the relaxation-time approximation, re-
fined to properly describe the behavior of carrier—carrier
scattering with density and temperature.

The analysis shows that, in spite of complications due
to band structure, signatures of ARP accompanied by
IPDP should be observable in the dependence of the car-
riers’ density n on the chirp rate in the frequency domain
@"(v). In addition, the carriers’ densities depend on the
chirp sign; n is larger for positive ®”(») than negative
®"(v) of the same absolute value |®"(v)|. To understand
this behavior, we introduced the time-dependent quasi-
particle (dressed electrons and holes) dispersion in the ro-
tating frame. This picture, along with the analysis of the
localization of nonequilibrium distribution functions, pro-
vides the explanation for the interplay of ARP with IPDP
and its dependence on the chirp sign. The distribution
functions are more localized near the avoided crossing
during NC excitation than those during PC excitation.
Therefore ARP is enhanced (and IPDP is suppressed) for
PC pulse excitation, and, correspondingly, ARP is sup-
pressed (and IPDP is enhanced) for NC excitation.

To appreciate the physical mechanism for this behavior,
a number of approaches to the total model were invoked:
the free-carrier model; the solely relaxation model, which
neglected many-body effects; and the partial many-body
effects model, which included both relaxation and band-
gap renormalization, and neglected Coulomb electron-
hole correlations. Comparisons among the behaviors of
different models enabled us to study the influence of re-
laxation and many-body effects on the chirped-pulse con-
trol of carriers.

First, Coulomb electron—hole correlations are of sec-
ondary importance at the carrier densities reached. The
main many-body effects are due to the bandgap renormal-
ization (bandgap shrinkage) during the exciting pulse ac-
tion and are well described by the partial many-body-
effects model.
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Second, both relaxation and, most notably, the bandgap
shrinkage are responsible for the carriers’ density depen-
dence on the chirp sign. Relaxation favors the IPDP for
NC pulse excitation and discriminates against it when
the pulse chirp is positive. As for the bandgap shrinkage,
it enlarges an effective spectral bandwidth of the exciting
pulse for PC excitation (enhancing ARP and suppressing
IPDP) and decreases the spectral bandwidth for NC exci-
tation (suppressing ARP and enhancing IPDP). As a mat-
ter of fact, the bandgap shrinkage, which is the main
many-body effect, gives the dominant contribution to the
asymmetry of the carriers’ density dependence on the
chirp sign.

Third, inclusion of many-body effects enlarges the car-
riers’ density in comparison with the solely relaxation
model. The picture of the time-dependent renormalized
dispersion (Fig. 6) offers an explanation of the carriers’
density enhancement due to the bandgap shrinkage.

In conclusion, our calculations show that the depen-
dence of carriers’ density n on the chirp rate in the fre-
quency domain ®”(v) is only slightly affected by details of
the time behavior of relaxation rates. The dependence
n[®"(v)] calculated with average values of relaxation
rates over the pulse is very close to that of the total
model.

APPENDIX A: CARRIER-CARRIER
SCATTERING

The scattering terms (dPy/d¢)sea; and (dFy/dt)seq; can be
written as

dFy
=) =Tl FI - F) - Toulk FIF,
scat
Py _ _
<_) =P > WE, + > WL Py (A1)
dt scat k' k'

in the framework of the Boltzmann equation.35’21’36’37

I}ere, Ik, Fl=S Wiy Fr, TSk, Fl=2 Wy, (1-F}),
Wi is the Boltzmann scattering matrix for carriers, and

Wi is the scattering matrix for the polarization. The

scattering matrices W7, are the sums of the scattering
matrices for carrier—carrier and carrier—phonon interac-
tions. In particular,

o _ Yire—e rre—h rr7e—ph
Wi = Wi + Wi + Wb,

W= Wion + Wi + Wikt (A2)

where e—e, h—h and e—h correspond to electron—electron,
hole-hole and electron—hole scattering, respectively, and
c—ph corresponds to carrier—phonon scattering.

A full kinetic treatment with scattering terms deter-
mined by Eq. (A1) is numerically too demanding. There-
fore we employ the relaxation-time approximation (see
Section 2). However, this approximation for carrier—
carrier scattering must be used with caution. The point is
that outright discarding of nondiagonal terms results in a
large overestimation of the relaxation rates at low densi-
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ties and an incorrect dependence of these rates on
density.‘l‘r”?’(”’37 The reason is that carrier—carrier scatter-
ing processes are strongly peaked in the forward direction
at low densities, owing to weak screening. Taking into ac-
count contributions with the structure of “in-scattering
terms” on the right-hand side of Egs. (A1), (I} [k, F] for
(dF5/dt)scat, and the second term Iy, Wh, Py for
(dPy/dt)geat), on the other hand, results in physically rea-
sonable values and the density dependence of the relax-
ation rates.?® One can take into account the contribution
of in-scattering terms in the framework of the relaxation-
time approximation by redetermining such diagonal re-
laxation rates as momentum or energy relaxation.?® Both
relaxation rates are of the same order of magnitude for
carrier—carrier scattering and are characterized by a
similar density dependence. Below, we use the momen-
tum relaxation rate, which is more convenient for our cal-
culations.

A number of the momentum-relaxation rates for
carrier—carrier scattering can be found in the
literature.*®*” For the nondegenerate (ND) case, when
the carrier temperature 7T is much larger than the tem-
perature T, (corresponding to the Fermi energy kgTF,
=(1%/2m,)(3mn)%?), the quantity (I'y*NP) is given by the
formula

ceNDy_ 22 Ep. 3/2 -2
Iry® >=g = (Tp/T)"*1In Q;", (A3)

where Ep.=m FEp is the effective Rydberg energy, Ep
=m,e?/ (2hzeg) the exciton Rydberg energy, m.=m./m,
and @, the screening wavenumber related to the Debye—
Hiickel screening q2=8mmn(e?/ €)/kpT: Qf
—12q%/[2m (kyT)]=(16/3m TXTY2/ T2 kyTp.=Eg,.

The contribution of the electron—hole scattering to the

momentum relaxation rate is*®

6 Ej

—h,ND\ _
<Ff( >_97T3/2 h

(TJT)*?1In Q;2, (A4)

where T> T, =Trm,, @2 =(16/3mT*TH%/T?, kyTr=Ep.

Now let us turn our attention to the degenerate (D)
case. In this case momentum relaxation rates (Ff{'c’D) for
electron—electron and hole-hole scattering are given by
the formula3®*®

P Eg( T \%k
(rgedy = ——2 (—) =, (A5)
6 # \Tp/) «

when T'<Tf,. Here, k is the screening wavenumber given
by Eq. (11) and kp=(372n)Y3 is the momentum at the
Fermi level. Since Eq. (11) for « is reduced to the
Thomas—Fermi formula

m,(e%e) [3n\VP _
K= 4———| —| (m.+my) (A6)
h T

for T<Tg,, we finally obtain
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5/2 2 1/4 ~1/2
" ch)__E_( T kBTFc) _m”
12 i \Tr.) \ Ep. | (m,+m,)"?

(A7)

The momentum relaxation rate due to electron—hole
scattering for T<T, was obtained in Ref. 46:

5/2E T 2 kBTn 1/4 m2m%
(rehby - — —| — . (A8)
12 4 \T, Ep (rnE + mh)

It is noteworthy that factors (T/T.)? and (T/T,)? in Egs.
(A7) and (A8), respectively, are related to the phase-space
restriction in the degenerated case. The factors
(kT /Eg.)V* and (kgT,/Eg)'* in these equations come
from screening.

Equations (A3), (A4), and (A7) correspond to limited
cases of ND and D electron-hole plasma, respectively.
There are no corresponding analytical expressions in the
intermediate region when 7'~ T, T,,. However, it can be
shown from the foregoing equations®® that relaxation
rates are proportional to n for small n:

< <1—~f‘-c,ND> ) ( m;l/Z )
= A9
(Ff;h’ND) 78ND ZVE /3 n (A9)

where 7~ 1 (see below), and tend to zero as n~"® when n
is very large:
(rye?) i
= - A10
(<Fi_h,1)> 8p rﬁ?rﬁ}% n ( )
Here
2\ mEgh
SND = W (Al 1)
r.
and

(77/3) I/GE%/Al(kBTV)ZmZ/AL

&p= V49492 4 )2 (A12)

Therefore one can reasonably expect for the relaxation
rates under consideration, as a function of n, a smooth
curve with a maximum in the intermediate region T
~Tg.,T,.* In the framework of our semiquantitative de-
scription for carrier-carrier scattering it will suffice to ex-
tend both limiting cases, as a function of n, until the cor-
responding curves intersect. Flattening of the peak can be
achieved by a two-point Pade approximation®®:

ngnpm; ’n

(g% = , (A13)
1+ ngﬂﬁlc—wznw/s
8D

_
2(72/3) ngnpn
<Fi_h> _ ND

8ND
1+2(\2/8) i m;2n 136
8D

(A14)

Smoothed dependences, Egs. (A13) and (A14), are close to
the nonsmoothed ones when 7=2. Such a procedure for
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7n=2 is used for calculating the relaxation rates due to
carrier-carrier scattering in Sec. 3.

APPENDIX B: CARRIER-PHONON
SCATTERING

The relaxatlon parameters for carrier—phonon scattering
(de{/dt) oh and (T}, Phy in Egs. (14) and (17), respectively,
can be calculated, using the scattering matrix Wf(',ph [see
Egs. (A2)], which is given by the Fermi golden rule 521,

W(i)CPh M 2 N (% 1 1 _ A
| 1l TO( 0)0)"' + 5(€k ek,+ o),

(B1)

where Wif,)]i'ph are the rates of carrier—phonon scattering
for emission (+) or absorption (—) of LO phonons, 7w, is
the energy of LO phonons, Np(fo)=[exp(Biw)—1]"!is the
Bose function, and q=+(k-k’) is the transferred momen-
tum. The scattering matrix elements Mli;‘,lk are given by
the formula

1
|M | - 61( k+qL3B(Q), (Bz)

where 6/ k+q 1s the Kronecker delta and the quantity B is

determined by®
BO q2 2
B(q) = —< ) (B3)
P\ + 2

in the instantaneous quasi-static approximation for

screened polar carrier-LO phonon interaction. 2 is given

by Eq. (11), By=(1/7po) mh®p§/m,, ph=(2m fiwy)Y2/h, 7o

=(2aw)~! is the characteristic time for carrier-LO phonon

scattering, a=e?(m,/2wy)?(1/e,~1/¢;) and e, is the

high-frequency dielectric constant of a semlconductor.
Using Egs. (B1)—(B3), we obtain for (de{/dt)C oh

(dF;;)@) hwg\ V2 1
— =-= —N hwo) = Ny (e
a) T\ TPO[ (fiwg) = Ny (hiwo)]

X{[f5 (e = fiwo) = ()] Olep
+[ff(e + o) - F()1UD, (B4)

where fF(Ekc) flf[,u,c(t ,T@®)], 6(€ —hwo) is the Heav151de
step function [0(ek —hwg)=1 for ek ‘—fhwyg>0 and 0(
—hwo) 0 fOI' Gk —hw0<0]

- h(l)o) U:

2
[(E(]gc ¥ th)I/Z + (620)1/2]2 + K2

c

U:=In

2
[(620 T hw0)1/2 _ (620)1/2]2 + K2
2m,

K2

2m,
? [(e_](;c ¥ hw0)1/2 + (600)1/2]2

K2

= Tom . (Bp)
( )[( T ﬁw() 1/2 _ (620)1/2]2 + K2
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Equation (B4) enables us to describe the energy transfer
between carriers and the LO phonon system.35’50 The pro-
cess under consideration conserves the carriers’ densities.
Let us turn to relaxation rates <Ff;ph>. ”The diagonal” in
k relaxation rates before averaging over quasi-
equilibrium distributions can be written in the form>

1 —flﬁ(egc - fiwg)
L i)

eon L + o) ]

-
+ ’
KE 1o fue)

Ff{'ph - 2 |:W(l;)]i-ph

Kk’

(B6)

Substituting Eqs. (B1)-(B3) into Eq. (B6), and averaging
over quasi-equilibrium distributions, we finally obtain

mpg 1 1[“ q*dgq
ey ——— | — ——_([Ny (hwp) + 1
= | e @ + 1

X exp(- Bhwy) In{1 + exp[ B(u, + hwy — €,)]}
+ N, (fiwg)exp(Bhiwy) In{1 + expl Bu, — iy

-e)lh, (B7)

where

pS=(2m fiwg) Y2/ .
One can see from Eq. (B7) that the carrier—phonon re-

laxation rate (Ff;ph) does not depend on the carrier den-

sity for small densities since, in this limit, In{l

+exp[ﬁ(ﬂciﬁw0_ E:)]} = eXp(B(Mciﬁwo— Ex)) ~n.

€= hag/ 2+ (hwo/ D[(a/ph)*+ /)],

APPENDIX C: ANALYTICAL SOLUTION

There exist an analytic solution®**® of the undamped

Bloch equations resulting from Eqgs. (3) and (4) for the
free-carrier model (no many-body effects) and a chirped
pulse of special shape

t—tg vy (! t' -t
E(t)=Eysech| — |, ¢(¢)=— tanh dt’.
T TTJo T

After completion of the pulse action and for the initial
conditions of Section 3, this solution is the following:

Fi () + Fi(=) = 2 sec[ (y + yo)/2]secl (v - 70)/2]

O]
X [Sin2<—)cosh2<z)
2 2
@ Y
+cos2(—)sinh2<—>}, (C1)
2 2

where ®=(02—1A)Y2, o=(d./h)[7.Et")At = (de/h)EgrT,
and yy= 7T7'(62/ h—Ag) are the dimensionless pulse area
and detuning, respectively.

Integrating quantity Ff{(oc)+Fﬁ(00) [see Eq. (C1)] with
respect to momentum k, and taking into account the limi-
tation on the excitation energy [see Eq. (9)], we obtain
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\Emf/ 2 e - 1 cosh y—cos ®
n(e)=—>—"| deye .
wia ), 1+ exp[(e— €,)/AA,.] cosh y+ cosh ¥,
(C2)

One can see from Eq. (C2) that the solutions for n(«) are
symmetric with respect to the sign of chirp.

APPENDIX D: EVALUATION OF BANDGAP
SHRINKAGE DURING PULSE ACTION

Let us estimate the bandgap shrinkage Ae,=Aecy
+Ae€gx ) during the excited-pulse action [see Eqgs. (6) and
(7). Quantities Aecyy and Aegx i were evaluated in Refs.
23 [Eq. (4.48)] and Ref. 27 [Eq. (9.29)], respectively. Using
these equations and introducing the normalized distance
rs between particles via relation®’ (4m/ 3)r§’=1/ (nag), we
obtain

-1/2

Brs
Aecy=-T7.62——— D1
cH (1 +8.4rY%12 (D1
A 0.81E5r Y 1 ! (D2)
€ =-0U. T - 1>
ps Bls 1+2.51"

where ag=f2¢y/(e?>m,) is the exciton Bohr radius and Ep
is the exciton Rydberg energy. In our simulation a typical
value of the carrier density after the completion of the
pulse action is n=5x10%cm™3, Ez=4.2 meV, and ap
=14 nm.”’ Substituting these values into Egs. (D1) and
(D2), we have Aey=Aecy+Aegx k=-41 meV.
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