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semiconductors: the role of many-body effects
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The possibility of realizing adiabatic rapid passage (ARP) with an intense chirped-pulse excitation (a concept
well known in molecular systems) in direct-gap semiconductors is studied. Based on the semiconductor Bloch
equations, the analysis shows that, in spite of complications due to band structure, signatures of ARP accom-
panied by an intrapulse pump-dump process (IPDP) should be observable in the dependence of the carriers’
density on the chirp rate in the frequency domain. The bandgap shrinkage, which is the main many-body ef-
fect, gives the dominant contribution to the asymmetry of this dependence on the chirp sign. We show that the
bandgap shrinkage enlarges the carriers’ density and makes a major impact on the interplay of ARP with
IPDP, enhancing ARP (suppressing IPDP) for positive chirped-pulse excitation and suppressing ARP (enhanc-
ing IPDP) for negative chirped-pulse excitation. © 2005 Optical Society of America
OCIS codes: 320.1590, 320.7130.
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. INTRODUCTION
elective population transfer with phase-modulated

chirped) pulses has applications in a number of areas,
uch as the preparation of initial states for spectroscopy,1

ptical quantum control of atoms, molecules,2–6 and
emiconductors7 (see Ref. 8, devoted to adiabatic popula-
ion transfer with a pair of delayed nonchirped pulses in
uantum wells, as well as Ref. 9) and Bose–Einstein
ondensates.10 In this work we concentrate on generating
arriers in bulk direct-gap semiconductors, which are in-
eresting for their use in electro-optical devices. Pulse
hirping has the potential to improve and optimize all-
ptical ultrafast switching.

Chirped pulses are very effective in selective popula-
ion transfer between molecular electronic states, owing
o adiabatic rapid passage (ARP)1,3,11–14 and the intra-
ulse pump-dump process (IPDP).15,16 ARP enables us to
ransfer the entire population from ground �1� to the ex-
ited �2� electronic state. IPDP creates a nonstationary
round-state component.17

An ARP is based on a sweeping of the pulse frequency
hrough a resonance. The mechanism of an ARP can be
xplained by avoiding the crossing of dressed (adiabatic)
tates

�±�t� = �sin ��t�

cos ��t���1� ± �cos ��t�

sin ��t���2� �1�

s a function of the instantaneous laser pulse frequency
�t�.3 Here, the mixing angle ��t� is defined (modulo �) as
= �1/2� arctan �U /��t��, where U is the Rabi frequency
nd ��t� is the frequency detuning of ��t� with respect to
0740-3224/05/122715-13/$15.00 © 2
he frequency of transition 1→2. During the excitation,
he mixing angle rotates clockwise from ��−��=� /2 to
�+��=0, and the composition of adiabatic states changes
ccordingly. In particular, starting from state �1�, the sys-
em follows the adiabatic (dressed) state �+�t� adiabati-
ally and eventually ends up in state �2�.6 A scheme based
n ARP is robust, since it is insensitive to pulse area and
he precise location of the resonance. Therefore it has
any uses, including the preparation of entangled

tates18 and initial states for Bose–Einstein
ondensates.10

In the wave-packet picture, IPDP can be explained as
ollows. The first field interaction places amplitude on the
1 excited state (pump) (Fig. 1). This amplitude starts to
lide down the potential energy surface. A second field in-
eraction can either bring more amplitude up, creating a
opulation in the excited state, or bring the amplitude
rom the first field interaction back down to S0, creating a
isplaced hole in the ground electronic state (dump).
ince the wave packet on S1 is moving from higher optical

requencies to lower, the ground-state population in-
reases for excitation by negatively chirped (NC) pulses.
hus a NC pulse creates a nonstationary ground-state
omponent, whereas a positively chirped (PC) pulse dis-
riminates against it.16

ARP in molecules in solution were studied for a two-
tate electronic system in Refs. 13, 14, and 19 and for a
timulated Raman adiabatic passage configuration in Ref.
0. It was shown in Ref. 13 that relaxation does not
inder coherent population transfer by ARP for PC pulses
nd moderate detunings of the central pulse frequency
005 Optical Society of America
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ith respect to the frequency of the Franck–Condon tran-
ition 1→2. Moreover, under these conditions the relax-
tion favors a more-efficient population transfer with re-
pect to the system with frozen nuclear motion (without
elaxation). Such behavior was explained in Ref. 14 by the
nterplay of ARP with IPDP. The point is that the main
diabatic criterion, �d��t� /dt�� �U�2, which is related to
he absence of nonadiabatic transitions between dressed
tates Eq. (1), does not mean a total population transfer
etween unperturbated states �1� and �2� (also known as
he diabatic states). If a transition starts or ends near the
voided crossing where a dressed (adiabatic) state is a su-
erposition of diabatic states, total population transfer
oes not occur. When the system remains at the avoided
rossing, the activation of IPDP is implied. Therefore, to
ealize total population transfer, in addition to the main
diabatic criterion, a transition must start and end far
rom resonance (the “second condition to the adiabatic cri-
erion” in terms of Ref. 14); otherwise, only signatures of
RP occur. In particular, a PC pulse excitation is favor-
ble for the fulfillment of the second condition to the adia-
atic criterion (see Fig. 1 and the corresponding discus-
ion above).

Optical excitation of direct-gap semiconductors has
ome similarities to optical transitions in molecules.
irst, the Franck–Condon principle in molecules is simi-

ar to the momentum conservation in direct semiconduc-
ors. Second, in the absence of relaxation and the Cou-
omb carriers’ interactions (in semiconductors), the Bloch
quations for both the molecular system13 and the direct-
ap semiconductor21,22 describe an ensemble of indepen-
ent two-level systems with different transition frequen-
ies corresponding to a pure inhomogeneously broadened
ptical transition. By this means one would expect the ef-
ective control of direct semiconductors using intense
hirped pulses from the analogy with molecules.

At the same time, the number of optically generated
arriers in a semiconductor is limited by the number of
uantum states in the range covered by the spectrum of
he exciting pulse (the Pauli exclusion principle). This
eans that the total population transfer to the conduc-

ig. 1. Diagrams of the intrapulse pump-dump process for NC
nd PC pulse excitation. The time of the interaction of the ex-
ited molecule with light ��2� shortens for PC excitation with re-
pect to that for NC excitation. We used designations of the time
rguments in accordance with the double-sided Feynman dia-
rams describing the intrapulse pump-dump process (see Fig. 6
f Ref. 13).
ance band is impossible. Therefore one must keep in
ind that the realization of ARP is possible for the quan-

um transitions only in the excitation region. There are
omplications owing to band structure in semiconductors
s well. Two regions of the avoided crossing of dressed
tates in momentum space exist and are a limited dis-
ance apart. It affects the passage of a system through
esonance. In addition, the optical excitation of semicon-
uctors is related to Coulomb electron-hole interactions,
he excitation of the partially excited states when the cre-
tion of an electron (hole) in the k state is not accompa-
ied by creating a hole (electron) in the same state,23 re-

axation times that depend on carriers density, etc. The
bove processes do not occur in molecular systems.
In the present work, we intend to clarify the following

ssues: Is it possible to realize an analogy to ARP for
irect-gap semiconductors excited with strong chirped
ulses? What is the interplay of ARP with IPDP for such
ystems? What is the role of many-body effects in the ex-
itations under discussion?

Some of the preliminary results in controlling carrier
eneration in bulk direct-gap semiconductors by intense
ltrashort chirped pulses are presented in conference
roceedings.24 Here we give a full account of this study
ith essentially new results.
The outline of the paper is as follows. In Section 2 we

resent the Bloch equations for a semiconductor with a
irect interband optical transition under the action of
hirped pulses. In Subsection 2A we describe approxima-
ions for calculating scattering terms, the calculation of
hich is carried out in Appendices A and B. In Section 3
e solve semiconductor Bloch equations for the total
odel, which takes into account both the relaxations re-

ated to carrier–carrier and carrier–phonon scatterings,
nd the many-body effects: the bandgap renormalization
nd Coulomb electron-hole correlations. In Section 4 we
ormulate a number of approaches to this model. In Sec-
ion 5 we present the calculation results, analyze the
hysics that underly the behavior of the approaches to the
otal model, and compare their behavior with that of the
otal model. Comparison of the behaviors of different
odels enables us to study the influence of relaxation and
any-body effects on the chirped-pulse control of carriers.

n Section 6, by analogy with the time-dependent, light-
nduced potentials for molecules,25 we introduce the time-
ependent ”dressed” states and analyze the time evolu-
ion of the weighted nonequilibrium distribution
unctions. In Subsection 6.1, using the picture of time-
ependent renormalized dispersion, we analyze the band-
ap renormalization influence on the effective spectral
andwidth of an exciting pulse and the carriers’ density
alue. In Section 7 we summarize our results. In the ap-
endices we present auxiliary calculations.

. BASIC EQUATIONS
et us consider a semiconductor with a direct interband
ptical transition. The semiconductor is affected by a
hase-modulated pulse of carrier frequency �:
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E�t� = E�+��t� + E�−��t� =
1

2
E�t�exp�− i�t + i	�t�� + c.c.,

�2�

here E�t� and 	�t� are the real functions of time and 	�t�
escribes the change of the pulse phase in time t. The in-
tantaneous pulse frequency is ��t�=�−d	�t� /dt.

We describe the ultrafast optical excitation of a semi-
onductor in the resonance approximation by semiconduc-
or Bloch equations26,21,23,27 for the distribution functions
f electrons, Fk

e , and holes, Fk
h, and the positive-frequency

omponent of polarization Pk�t�=Pk�t�exp	−i��t−	�t��
.
witching to the system that rotates with instantaneous

requency ��t�, Pk�t�=Pk�t�exp	i��t−	�t��
, we obtain
quations for the quantities, which slowly vary with time
uring the period of a light wave

dFk
c

dt
= − Im�UkPk

* � + �dFk
c

dt
�

scat

, �3�

dPk

dt
= i
k�t�Pk +

i

2
Uk�1 − Fk

e − Fk
h�

+ �dPk

dt
�

scat

, �4�

here c=e ,h;


k�t� = ��t� −
Eg

�
−

�k

�
= 
0 −

d	�t�

dt
−

�k

�
, �5�

here 
0=�−Eg /� is the detuning of the carrier pulse fre-
uency � with respect to the semiconductor optical gap
g /�; �k=�k

0+
�k and �k
0=�k

0e+�k
0h=�2k2 /2mr are the

enormalized and kinetic energies, respectively, of an
lectron-hole pair in a semiconductor with reduced mass

r=memh / �me+mh�; �k
0c=�2k2 /2mc are the kinetic ener-

ies of the carriers; 
�k=
�CH+
�SX,k;


�CH = 

q�0

�Vs�q� − V�q�� �6�

s the Debye shift, or the so-called Coulomb-hole self-
nergy;


�SX,k = − 

q

Vs�q��Fk+q
e + Fk+q

h � �7�

s the screened-exchange shift23; and

Uk =
dcvE�t�

�
+

2

�


k�

Vs��k − k���Pk� �8�

s the generalized Rabi frequency. Here V�q�
4�e2 /L3�0q2 and Vs�q� are unscreened and screened
oulomb potentials, respectively [the formula for Vs�q� is
iven below]; e is the value of the electron charge, L3 is
he volume; �0 is the static dielectric constant of the semi-
onductor; and dcv is the matrix element of the dipole mo-
ent. Following Ref. 28, we take into account the depen-

ence of the matrix element of the dipole moment on the
arrier energy due to the nonparabolicity of the band
tructure:
dcv�k� =
dcv

1 + exp���k − �c�/�
c�
, �9�

here �c=270 meV and �
c=1.05 meV for bulk GaAs.
uch a dependence imposes the limitation on the energy
f the carriers’ excitation. The quantities �dPk /dt�scat and
dFk

c /dt�scat are the carrier–carrier and carrier–phonon
cattering terms, respectively. It is worth noting that Eqs.
3), (4), and (6)–(8) are essentially a Hartree–Fock ap-
roximation, improved to account for quasi-static screen-
ng. Owing to the short exciting pulse duration tp

100 fs, we neglect radiative recombination in Eqs. (3)
nd (4).
The formulas for quantities Vs�q�, �dPk /dt�scat and

dFk
c /dt�scat depend on the time interval under

iscussion.29,28,30 We shall restrict our consideration to
imes longer than the reciprocal plasma frequency �pl

−1,
hich is approximately equal to the time required for the
uildup of the screening. In this case, one can use the in-
tantaneous quasi-static plasmon-pole approximation for
creened Coulomb potential Vs�q�31–33,23:

Vs�q� = V�q��1 +

2

q2 + C
2� �q2

4mr�pl
�2�

−1

, �10�

here


2 =
4��e2/�0�

�2�2 �me�
0

�

dkFk
e + mh�

0

�

dkFk
h� , �11�

�pl
2 = 4�e2ne/�mr�0�, �12�

nc = 2L−3

k

Fk
c . �13�

t is noteworthy that charge neutrality ne�t�=nh�t��n�t�
olds owing to pair excitation (deexcitation) by light.
ere, the carrier density nc, the screening wavenumber 


see Ref. 34), and the plasma frequency, �pl, depend on
ime, and C�4.

For example, for GaAs (mr=0.0527m0; m0 is the elec-
ron mass in a vacuum), the reciprocal plasma frequency
pl
−1 ranges from 40 to 13 fs when the carrier density n
anges from 1017 to 1018 cm−3. The greater the density,
he smaller the corresponding time, since �pl depends on
he carrier density. Since n�1018 cm−3 during the main
art of the exciting pulse in our calculations (see Section
), our consideration is undoubtedly correct for t�40 fs. It
tands to reason that the corresponding time increases for
maller densities. However, in the last case, the charac-
eristic times of the carrier–carrier relaxations and the
uildup of the screening become larger than the exciting
ulse duration tp�100 fs. Therefore, for small densities,
he influence of the processes under discussion on the car-
ier kinetics is of minor importance.

For times longer than the reciprocal plasma frequency
pl
−1, the scattering terms �dPk /dt�scat and �dFk

c /dt�scat can
e described in the framework of the Boltzmann
quation35,21,36,37 [see Eqs. (A1) of Appendix A].
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A full kinetic treatment with scattering terms deter-
ined by the Boltzmann equation is numerically too de-
anding. Therefore we employ an approximation that

orrectly describes the scattering terms’ behavior with
ensity and temperature. In the case that distribution
unctions Fk

c are different from quasi-equilibrium Fermi
istributions fk

c��c�t� ,T�t��, but not by much, one can lin-
arize the scattering terms �dPk /dt�scat and �dFk

c /dt�scat
ith respect to the deviation �Fk

c �Fk
c − fk

c ��c�t� ,T�t��. In
articular, the linearization is favored by the high densi-
ies and, consequently, the high scattering rates. The
uasi-equilibrium Fermi distributions fk

c ��c�t� ,T�t�� are
etermined by both the time-dependent chemical poten-
ials �c�t� and the carriers’ temperature T�t�.21,27,23

As to carrier–phonon scattering terms, we consider the
honon system (of LO phonons) to be maintained at a con-
tant temperature T0 during ultrafast laser excitation ow-
ng to its large heat capacity. Substitution of (quasi)equi-
ibrium distribution functions for carriers and LO
honons, whose temperatures are different, into the right-
and side of Eq. (A1) of Appendix A, results in the term
dFk

c /dt�c-ph
�0� , which describes the energy transfer between

arriers and the LO phonon system (see Appendix B). Su-
erscript 0 means that �dFk

c /dt�c-ph
�0� is the zero-order term

ith respect to �Fk
c .

The rigorously linearized scattering terms ��Fk
c also

ontain nondiagonal terms in k.21,30,38 Neglecting the
ondiagonal terms results in a relaxation-time
pproximation21,35,38

�dFk
c

dt
�

scat

= �dFk
c

dt
�

c−ph

�0�

− ��k
c �	Fk

c − fk
c��c�t�,T�t��
,

�14�

�dPk

dt
�

scat

= − ��k�Pk, �15�

here ��k
e,h� and

��k� = ���k
e � + ��k

h��/2 �16�

re the relaxation rates related to relaxation of the carri-
rs’ distribution functions and polarization, respectively.
s a consequence of carrier conservation, parameters �k

e,h

ave to be k independent.21 Therefore we shall use relax-
tion rates averaged over quasi-equilibrium distributions
the notation �¯�). The quantities ��k

c � are equal to

��k
e � = ��k

e−e� + ��k
e−h� + ��k

e−ph�,

��k
h� = ��k

h-h� + ��k
h-e� + ��k

h-ph�, �17�

here e−e, h−h, e−h, and c−ph correspond to the
lectron–electron, hole–hole, electron–hole, and carrier–
honon scattering, respectively. Calculation of scattering
erms �dFk

c /dt�c-ph
�0� , ��k

c−c�, ��k
e−h�, and ��k

e−ph� is carried out
n Appendices A and B.
. NUMERICAL SOLUTION OF COUPLED
IFFERENTIAL EQUATIONS
e solve the coupled equations [Eqs.(3) and (4) ]for the

nitial values of the carriers’ density ne=nh=0, tempera-
ure T=T0=300 °K, and polarization Pk=0. The scatter-
ng terms �dPk /dt�scat and �dFk

c /dt�scat are determined by
qs. (14)–(17).
We used Eqs. (8) and (10)–(13) for the calculation of the

eneralized Rabi frequency, Uk, Eqs. (6), (7), and (5) for
he calculation of 
k�t�, and Eqs. (11), (B4), and (B5) for
he calculation of carrier–phonon scattering term
dFk

c /dt�c-ph
�0� . Relaxation rates ��k

c � and ��k� are defined by
he quantities ��k

c−c�, ��k
e−h�, and ��k

c−ph�. The last are de-
ermined by the corresponding equations in Appendices A
nd B.
We integrated Eqs. (3) and (4) by the Runge–Kutta
ethod. We calculated quasi-equilibrium Fermi distribu-

ions, fk
c��c�t� ,T�t��, by nonequilibrium distribution func-

ions of electrons, Fk
e and holes, Fk

h, found at the previous
ime step, using Eq. (13) for the carrier density n�t� and
he formula for the total kinetic-energy density

��kin� = 2L−3

k,c

�k
0cFk

c . �18�

s a first step, we evaluated the carriers’ temperature
�t� by Eqs. (B10) and (B13) of Ref. 21, linking ��kin� and

emperature. Then, using n�t� and T�t�, we calculated the
hemical potentials, �c, from Eq. (B9) of Ref. 21

. APPROXIMATE MODELS
he solutions corresponding to Eqs. (3), (4), and (6)–(8)
re termed “the total model” for short, bearing in mind
hat they take into account the relaxations related to
arrier–carrier and to carrier–phonon scatterings, and
he many-body effects: the bandgap renormalization [see
qs. (6) and (7)] and Coulomb electron–hole correlations

the second term on the right-hand side of Eq. (8)]. In this
ection we describe a number of approaches to the total
odel.

. Free-Carrier Model
or pulses much shorter than the characteristic relax-
tion times of the system, one can ignore the scattering
erms �dFk

c /dt�scat and �dPk /dt�scat on the right-hand side
f Eqs. (3) and (4). If, in addition, one neglects the band-
ap renormalization �
�k=0� and Coulomb electron–hole
orrelations �Uk=dcvE�t� /��, one arrives at the free-
arrier model. In this case, our system can be described as
n ensemble of independent two-level systems with differ-
nt transition frequencies corresponding to a pure inho-
ogeneously broadened interband transition. In this situ-

tion, Eqs. (3) and (4) can be integrated independently for
ach k. Solutions of the resulting undamped equations
re interesting from the point of view of increasing the
ossible number of carriers due to coherent effects, as
hese solutions ignore all the irreversible relaxations that
estroy coherence.
An analytic solution of the resulting undamped equa-

ions for a chirped pulse of special shape exists39,40 (see
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ppendix C). The corresponding solution for n��� [see Eq.
C2) of Appendix C] is symmetric with respect to the sign
f the chirp.

. Solely Relaxation Model
f one neglects the bandgap renormalization and Coulomb
lectron-hole correlations (
�k=0 and Uk=dcvE�t� /�) in
he total model, one arrives at the solely relaxation model.
omparisons between the solely relaxation model behav-

or and those of the free-carrier and total models will en-
ble us to study the influence of the relaxation and many-
ody effects, respectively, on the chirped-pulse control of
arriers.

. Partial Many Body Effects Model
he many-body effects include both the bandgap renor-
alization (diagonal effect) and Coulomb electron–hole

orrelations. If one neglects these correlations in the total
odel �Uk=dcvE�t� /��, one arrives at the partial many-

ody effects model, including only the bandgap renormal-
zation. It should be emphasized that the partial many-
ody effects model does take into account the relaxation
ffects described by scattering terms �dFk

c /dt�scat and
dPk /dt�scat. Therefore comparisons between the last
odel behavior and that of the total model will enable us

o study separately the influence of the bandgap renor-
alization and Coulomb electron–hole correlations on the

hirped-pulse control of carriers.

. RESULTS AND DISCUSSION
e consider linear chirped pulses of the form

E�t�exp�i	�t�� = E0 exp�−
1

2
�� 2 − i���t − t0�2�. �19�

f chirped pulses are obtained by changing the separation
f pulse-compression gratings, the parameters � and �
re determined by the formulas16,13

ig. 2. Continuum part of the bandgap absorption spectrum in
n unexcited sample (solid curve), calculated by the Elliott
ormula,23,27, together with exciting pulse spectra for different
etunings of the carrier pulse frequency, �, with respect to the
emiconductor optical gap �
0=��−Eg=0 (dashed curve), 80
dashed–dotted curve) and 140.4 (dotted curve) meV. The Elliott
ormula is adjusted for the dipole moment dependence on the car-
ier energy [Eq. (9)].
� 2 = 	�0
2 + ���2���/�0

2�
−1, � = − �������0
4 + ��2����−1,

�20�

here �0= tp0 / �2�ln 2� , tp0 is the pulse duration of the cor-
esponding transform-limited pulse, and �����
����� / �4�2�, ����� the chirp rate in the frequency do-
ain. In addition to tp0, the transform-limited pulse is

haracterized by the dimensionless pulse area S0
1/��−�

� dcvE�t�dt=dcvE0������=0��0
�2� /�. The pulse

hirping does not change a pulse spectrum and its energy;
t stretches only a pulse and reduces its peak intensity.

All calculations were performed for an optically thin
ulk sample of GaAs at room temperature for tp0=13 fs
nd S0=1.5� and different detunings of the carrier-pulse
nergy �� with respect to the semiconductor optical gap
g: �
0=0, 80, and 140.4 meV. The continuum part of the
andgap-absorption spectrum in such a sample when it is
nexcited is shown in Fig. 2 along with exciting pulse
pectra for the detunings listed. It is noteworthy that the
sed pulse parameters correspond to moderately strong
elds. For example, E0�15�105 V/cm for �������
104 fs2. The values of the GaAs parameters were taken

rom Refs. 21,22 (m0 is the electron mass in vacuum):

e effective electron mass 0.067m0

h effective hole mass 0.247m0

g bandgap 1.519 eV
transition dipole moment 25.0�10−18 CGSE

ig. 3. Excited carrier densities n after the completion of the
ulse action as functions of ����� for different detunings (a) �
0
0, (b) 80, and (c) 140.4 meV. T, total model; F, free-carrier model;
, solely relaxation model; S, simplified relaxation model24 ��k

e �
��k

h�=17 ps−1 adjusted for many-body effects (see text); P, par-
ial many-body effects model.
cv
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0 static electric constant 12.3
�0 LO phonon energy 36 meV

Fröhlich constant 0.069

igure 3 shows the excited carrier density after the
ompletion of the pulse action as a function of �����. The
alculated dependences n������� are confined to the val-
es of an argument ��������5000 fs2, since our consider-
tion is correct for times larger than the reciprocal
lasma frequency. One can see that with a rise in the ab-
olute value of ����� in the limit of ��������104 fs2, the
arrier density n increases for all the models and detun-
ngs. For larger values of ��������104 fs2, one can observe
mooth variations of n.

Curves F for the free-carrier model are symmetrical
ith respect to the chirp sign. For other models, n de-
ends on the chirp sign (curves T, R, and P). Figure 3
hows that the larger the frequency detuning 
0 is, the
arger the asymmetry of carrier-density dependence on
he chirp sign is. The carriers’ densities n are larger for
ositive ����� than those for negative ����� of the same
bsolute value �������.
Including relaxation in the solely relaxation model

curves R) results in diminishing n relative to the free-
arrier model (curves F). This diminishing depends on the
requency detuning 
0. The larger the frequency detuning
0 is, the larger the influence of relaxation on the excited
arriers’ density is. This last effect also depends on the
hirp sign and therefore contributes to the asymmetry in
he corresponding curves.

Including many-body effects in the total (curves T) and
artial many-body effects (curves P) model enlarges the
xcited carrier densities in comparison with the solely re-
axation model (curves R). This increase is largest for
mall detunings (
0=0, near the band edge) [Fig. 3(a)]
nd diminishes when the excitation frequency is well
bove the bandgap ��
0=140.4 meV� [Fig. 3(c)]. It results
n the largest values of n, which correspond to the total

odel when 
0=0, and the free-carrier model when �
0
140.4 meV. In addition, the many-body effects contrib-
te to the asymmetry of the carrier densities’ dependence
n the chirp sign. The densities are larger for positive
hirp.

Furthermore, curves P are very close to the correspond-
ng curves T when the carrier frequency is above the band
ap [Figs. 3(b) and 3(c)]. Curves T are slightly higher than
orresponding curves P for small detunings (
0=0, near
he band edge) [Fig. 3(a)], which can be explained by Cou-
omb enhancement.27 As a matter of fact, Coulomb
lectron–hole correlations are of secondary importance in
he case under consideration. It means that the partial
any-body effects model would suffice to describe our

imulation results.

. Adiabatic Criterion in the Free-Carrier Model
o understand the behavior shown in Fig. 3, we shall first
iscuss the free-carrier model. This is an ensemble of in-
ependent two-level systems with different transition fre-
uencies corresponding to a purely inhomogeneous broad-
ned interband transition. We shall consider strongly
hirped pulses when the pulse duration is much longer
han that of the transform-limited one. Then (see Ref. 41)

������� � �0
2. �21�

or these conditions, the main adiabatic criterion for a
wo-level system for resonance interaction1 is the follow-
ng:

�d��t�

dt
� � �Uk�t��2. �22�

or linear chirped pulses determined by Eqs. (19) and
20), we obtain from Eq. (22)

S0 � �2�. �23�

he value of S0=1.5� used in our calculations exceeds the
ight-hand side of Eq. (23), but not by much. By this
eans, increasing n, shown in Fig. 3 for the free-carrier
odel in the region of ��������104 fs2, can be explained by

ignatures of ARP, bearing in mind a sweeping of the
ulse frequency through a resonance for quantum transi-
ions in the excitation region (see Fig. 2). The interplay of
RP with IPDP will be discussed in Section 6.
According to Eq. (23), the main adiabatic criterion for

he excitation of the free-carrier model with strongly
hirped pulses is determined only by the area of the
ransform-limited pulse and does not depend on the phase
erm �����. The point is that both the chirp rate and the
quare of the Rabi frequency decrease as 1/ ������� under
he conditions considered [see Eqs. (19)–(21)]. Therefore
he fulfillment of inequality (22) is not affected by �����.

. Signatures of ARP in the Solely Relaxation, Partial
any-Body Effects, and Total Models
ccording to Ref. 14, relaxation does not break the adia-
aticity of a process for strong interaction when the Rabi
requency exceeds the reciprocal irreversible dephasing
ime. Although this condition has been obtained for a mo-
ecular system, from the physical standpoint it must also
e satisfied in our case, i.e.,

�Uk�t�� � ��k�, �24�

or linear strongly chirped pulses determined by Eqs.
19)–(21), we obtain by Eq. (24)

S0� 2�

��������1/2

� ��k�. �25�

or S0=1.5� and ������ � =104 fs2, the left-hand side of Eq.
25) is about 1/10 fs−1, more than the value of the relax-
tion rate for polarization ��k�. This means the conserva-
ion of the ARP signatures for all the models that take re-
axation into account, i.e., the solely relaxation, partial

any-body effects and total models, when �������
104 fs2. The latter explains the behavior of the depen-

ences n������� in Fig. 3 for these models, which is simi-
ar to that of the free-carrier model in the region �������

104 fs2, at least for positive chirps. For larger values of
����� � �104 fs2, inequality (25) breaks down. Under these
onditions, a coherent ARP signature gives way to an in-
oherent behavior.
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Since the adiabatic criterion for all the models, taking
nto account relaxation, depends on ��k� [see Eqs. (24) and
25)], we show in Fig. 4(a) time behaviors of relaxation
ates for the total model when chirp rates in the fre-
uency domain are equal to �����= ±104 fs2 for PC and
C pulses, respectively. By virtue of the fact that relax-
tion parameters in our approximation depend on the car-
ier density n and their temperature T [see Eqs.
A11)–(A14)], we show in Figs. 4(b) and 4(c) n�t� and T�t�,
espectively, as functions of time as well. One can see
hat, at the beginning of the exciting pulse, relaxation
ates ��k�, ��k

e−e�+ ��k
e−h�, and ��k

h−h�+ ��k
h−e� increase over

ime owing to the increase of the carrier density and then
end toward constant values. The average values of ��k�
ver the pulse are close to that used previously for the
implified relaxation model24 when �dFk

c /dt�c−ph
�0� =0 and

�k
e �= ��k

h�= ��k�=const=17 ps−1. It is noteworthy that the
ependence n�������, calculated for the simplified relax-
tion model24 adjusted for the many-body effects, is very
lose to that of the total model (see curves T and S of Figs.
(b) and 3(c)).

. TIME EVOLUTION OF NONEQUILIBRIUM
ISTRIBUTION FUNCTIONS: TIME-
EPENDENT QUASI-PARTICLE (“DRESSED”
LECTRONS AND HOLES) DISPERSION
e have explained the increasing n, shown in Fig. 3, for

he solely relaxation, partial many-body effects, and total
odels in the region of �� �����104 fs2 via signatures of

ig. 4. (a) Relaxation rates [��k� (A), ��k
e−e�+ ��k

e−h� (B), ��k
h−h�

��k
h−e� (C), ��k

e−ph� (D) and ��k
h−ph� (E)], (b) carrier density, and (c)

arrier temperature as functions of time for PC [left column,
����=104 fs2] and NC [right column, �����=−104 fs2] excitation.
etuning is �
0=140.4 meV. The exciting pulse shape �E�t� /E0�2

s also shown at each graph (dotted curves).
�

RP. In addition, Fig. 3 shows that a PC pulse is more ef-
ective for generating electron–hole pairs in these models
han a NC pulse. To understand this behavior, we shall
onsider the second condition to the adiabatic criterion in
erms of Ref. 14. To achieve a total population transfer, a
ransition must start and end far from resonance to avoid
PDP.15,16 To clarify to what extent the last condition is
atisfied for interband transitions in direct semiconduc-
ors, we shall consider the time behavior of nonequilib-
ium distribution functions for PC and NC excitations.

Since, for the isotropic model, nc=2L−3
kFk
c

�1/�2��0
�k2Fk

c dk, Fig. 5 presents the time evolution of
he weighted nonequilibrium distribution functions,
2Fk

e,h�t�, calculated by solving coupled differential equa-
ions (3) and (4) for the total model when �����
±104 fs2. In addition, Fig. 5 shows renormalized elec-

ron energies corresponding to the conduction band

�k
cond =

�2k2

2me
− 


q
Vs�q�Fk+q

e �26�

nd the photonic replication of the valence band

�k
v = ���t� − �Eg + 
�CH� −

�2k2

2mh
+ 


q
Vs�q�Fk+q

h . �27�

n external electromagnetic field gives rise to interaction
etween states determined by Eqs. (26) and (27) and, as a

ig. 5. Energies {left axis; �k
cond, dashed–dotted line; �k

v, dotted
urve, dressed states [Eq. (28)] E1, solid curve and E2, dashed
urve} and the weighted nonequilibrium distribution functions
populations) [right axis; �kaB�2Fk

e , solid curve and �kaB�2Fk
h,

ashed curve) as functions of the wave number k at the (a) be-
inning, (b) middle, and (c) end of the exciting pulse for positive
left column, �����=104 fs2) and negative (right column, �����
−104 fs2) chirp. The parameters are identical to those of Fig. 4.

nset, the square of electric field amplitude �E�t� /E0�2 of the excit-
ng pulse in relative units. The arrows show the instants of time
orresponding to (a), (b), and (c).
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onsequence, to the time-dependent dressed states with
nergies

E1,2�t� =
1

2
	��k

cond + �k
v � � ��
k

2�t� + �Uk�2�1/2
, �28�

here quantity �
k�t�=�k
v −�k

cond was determined by Eq.
5). The states, the dispersion of which is described by Eq.
28), are a generalization of the dressed states introduced
n Ref. 42 (see also Refs. 43 and 44) to the time-dependent
uasi-particles (dressed electrons and holes).
Let us compare the left and right columns of Fig. 5 for

C and NC excitation, respectively. One can see that, at
he beginning and the middle of the exciting pulse (Figs.
(a) and 5(b)), the weighted nonequilibrium distribution
unctions k2Fk

e,h�t� are more localized near the avoided
rossing for the NC excitation than the PC excitation.
his means that the second condition of the adiabatic cri-
erion is better satisfied for PC excitation than for NC ex-
itation. In other words, the signatures of ARP under PC
xcitation are stronger (IPDP is minimal). This explains
he dependence of n on the chirp sign observed in Fig. 3.

Figure 5 shows that the second condition of the adia-
atic criterion is not well satisfied for both chirps, since
unctions k2Fk

e,h�t� are situated not far from the avoided
rossing during the pulse action, and IPDP occurs. The
oint is that the exciting pulse spectrum is limited and is
arrower than the transition bandwidth in our simula-
ions (see Fig. 2). In addition, there are two regions of the
voided crossing in the momentum space that are a lim-
ted distance apart. By this means, the population trans-
er for ��������104 fs2, shown in Fig. 3, can be explained
y the interplay of ARP with IPDP. However, the signa-
ures of ARP under PC excitation are stronger than those
or NC excitation. Correspondingly, the signatures of
PDP under NC excitation are stronger than those for PC
xcitation.

. Dependence of Distribution-Function Localization on
hirp Sign
igure 5 shows that the distribution functions k2Fk

e,h�t�
re more localized near the avoided crossing for NC exci-
ation than those for PC excitation. Such behavior may be
ttributed to both relaxation and bandgap shrinkage dur-
ng the excited pulse action.

The relaxation effects are similar to those in molecular
ystems (see Section 1 and Fig. 1). Consider an excitation
ith positive detuning 
0�0 of the carrier pulse fre-
uency � with respect to the semiconductor optical gap
g /� (Fig. 2). In the wave-packet picture, the field inter-
ction places amplitudes on the conduction band (Fig. 5).
hese amplitudes start to slide down the band. Since the
ave packets on the conduction band move from higher
ptical frequencies to lower optical frequencies, they fol-
ow the avoided crossing between the conduction band
nd the photonic replication of the valence band for NC
xcitation, inducing IPDP, and “run away” from the
voided crossing for PC excitation, suppressing IPDP.
his explains the asymmetry of the dependence of n on

he chirp sign, observed in Fig. 3, especially for the solely
elaxation model (curves R), which increases with the fre-
uency detuning 
 .
0
. Bandgap Shrinkage Contribution
owever, the asymmetry under discussion is larger for

he partial many-body effects and total models (curves P
nd T) than for the solely relaxation model. It means the
any-body effects also contribute to the asymmetry. Since

he partial many-body effects model would suffice to de-
cribe our simulation results (see Section 5), the main
ontribution arises from the bandgap shrinkage [Eqs. (6)
nd (7)]. The latter is contained in the quantity �
k�t�
Eq. (5)], which is the difference between the renormal-
zed electron energies [Eqs. (26) and (27)]:

�
k�t� = �k
v − �k

cond

= ��k
0,v − �k

0,cond� − 
�k = ����t� − Eg − �k
0h − �k

0e� − 
�k,

�29�

here �k
0,cond=�k

0e=�2k2 /2me and �k
0,v=���t�−Eg−�k

0h��k
0h

�2k2 /2mh� are the related nonrenormalized energies cor-
esponding to the free-carrier model. The larger the
hange of �
k during the exciting pulse action

��
k�tf� − 
k�ti�� = ����tf� − ��ti�� − 
�k�tf�, �30�

he better the second condition of the adiabatic criterion
s obeyed. In this case, the distribution functions k2Fk

e,h�t�
re less localized near the avoided crossing, and the sig-
atures of ARP are stronger. The first term on the right-
and side of Eq. (30) is determined by the spectral band-
idth of the exciting pulse. This term is positive for PC
xcitation and negative for NC excitation, whereas the
econd term −
�k�tf� (the bandgap shrinkage) is positive.
ccording to the estimations in Appendix D, the bandgap
hrinkage reduces the semiconductor optical gap by
�k�tf��−41 meV during pulse action. This means that

he change of �
k is larger than the pulse bandwidth by
1 meV for PC excitation and smaller than the pulse
andwidth by the same value for NC excitation. The
hange is equivalent to the corresponding increase in the
ffective spectral bandwidth of the exciting pulse for PC
xcitation and to the corresponding decrease for NC exci-
ation. Hence the difference between the values of
�
k�tf�−
k�ti�� for PC and NC excitations comprises
�
�k�tf���80 meV. This value is of the same order of
agnitude as the spectral bandwidth of the exciting pulse

140 meV�. As a matter of fact, the shrinkage influence on
he localization of the distribution functions, k2Fk

e,h�t�,
ust be essential. It amplifies the asymmetry in the de-

endence of n on the chirp sign observed in Fig. 3 for the
otal and partial many-body effects models (curves T and
, respectively) with respect to the solely relaxation model
curves R).

Figure 6 illustrates the above issue, presenting the
ime evolution of the renormalized electron energies de-
ned by Eqs. (26) and (27)) (solid curves) and the related
onrenormalized energies corresponding to the free-
arrier model �k

0,cond and �k
0,v (dotted curves). The bandgap

hrinkage is in accordance with the estimations of Appen-
ix D. The first term on the right-hand side of Eq. (30),
���tf�−��ti��=�k

0,v�tf�−�k
0,v�ti�, can be seen as the energy

ifference between dotted curves representing nonrenor-
alized photonic replications of the valence band at the

nd (C) and the beginning (A) of the exciting pulse. The
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otal right-hand side of Eq. (30), ��
k�tf�−
k�ti�����k
v �tf�

�k
v �ti��+ ��k

0,cond−�k
cond�tf��, is the energy difference be-

ween solid curves representing renormalized photonic
eplications of the valence band at the end (C) and the be-
inning (A) of the exciting pulse, plus a small difference
etween �k

0,cond and the lowest solid curve representing a
enormalized conduction band at the end of the pulse.
ne can easily see that the vertical distances between

enormalized photonic replications of the valence band,
k
v , at the beginning (A) and the end (C) of the pulse in-
rease for PC excitation (left column) and decrease for NC
xcitation (right column) in comparison with those for
onrenormalized photonic replications �k

0,v. As indicated
bove, it is equivalent to an increase in effective spectral
andwidth of the exciting pulse for PC excitation, and the
orresponding decrease for NC excitation.

As seen in Fig. 3, including the bandgap shrinkage en-
arges the excited carrier densities, n, in comparison with
he solely relaxation model. Fig. 6 enables us to explain
his issue as well. The point is that the renormalized en-
rgies intersect at larger k than those of nonrenormalized
nes at the same instants of time (see Fig. 6). Since the
ensity of states is proportional to k2, the strength of a di-
ole transition between the renormalized states is larger
han that of nonrenormalized states which results in in-
reasing n. Considering the instantaneous intersection

ig. 6. Time evolution of renormalized electron energies �k
cond

nd �k
v (solid curves) and the corresponding nonrenormalized en-

rgies �k
0,cond and �k

0,v (dotted curves) for positive [left column,
����=104 fs2] and negative [right column, �����=−104 fs2] chirp
nd different detunings (a) �
0=0 and (b) 140.4 meV. The other
arameters are identical to those of Fig. 4. Inset, the square of
lectric field amplitude �E�t� /E0�2 of the exciting pulse in relative
nits. The arrows show the instants of time corresponding to
urves (A), (B), and (C) for the ”photonic replications” of the va-
ence band �k

v and �k
0,v.
oints for the pulse maximum (curves B), one can see that
his effect is relatively large for small detuning �
0=0�
ear the band edge (see Fig. 6(a)) and diminishes when
he excitation frequency is well above the bandgap ��
0
140.4 meV� (Fig. 6(b)). It explains the largest enhance-
ent of n due to many-body effects at small detuning


0=0�, observed in Fig. 3(a), and the lesser enhancement
hen �
0=140.4 meV (Fig. 3(b)).

. CONCLUSION
n this work we studied the possibility of realizing ARP,
xcited with an intense short chirped pulse (a concept
ell known in molecular systems), in a bulk direct-gap

emiconductor. An ultrafast laser pulse—semiconductor
nteraction was described by semiconductor Bloch equa-
ions. These are essentially time-dependent Hartree–
ock approximations, improved to account for quasi-static
creening, which is appropriate for the pulse intensities
nd carrier densities we reached. The solutions corre-
ponding to these equations were termed the total model
or short, bearing in mind that they took into account
oth the relaxations related to carrier–carrier and
arrier–phonon scatterings, and many-body effects—the
andgap renormalization and Coulomb electron–hole cor-
elations. The relaxation rates in the total model were
alculated within the relaxation-time approximation, re-
ned to properly describe the behavior of carrier–carrier
cattering with density and temperature.

The analysis shows that, in spite of complications due
o band structure, signatures of ARP accompanied by
PDP should be observable in the dependence of the car-
iers’ density n on the chirp rate in the frequency domain
����. In addition, the carriers’ densities depend on the

hirp sign; n is larger for positive ����� than negative
���� of the same absolute value �������. To understand

his behavior, we introduced the time-dependent quasi-
article (dressed electrons and holes) dispersion in the ro-
ating frame. This picture, along with the analysis of the
ocalization of nonequilibrium distribution functions, pro-
ides the explanation for the interplay of ARP with IPDP
nd its dependence on the chirp sign. The distribution
unctions are more localized near the avoided crossing
uring NC excitation than those during PC excitation.
herefore ARP is enhanced (and IPDP is suppressed) for
C pulse excitation, and, correspondingly, ARP is sup-
ressed (and IPDP is enhanced) for NC excitation.
To appreciate the physical mechanism for this behavior,
number of approaches to the total model were invoked:

he free-carrier model; the solely relaxation model, which
eglected many-body effects; and the partial many-body
ffects model, which included both relaxation and band-
ap renormalization, and neglected Coulomb electron-
ole correlations. Comparisons among the behaviors of
ifferent models enabled us to study the influence of re-
axation and many-body effects on the chirped-pulse con-
rol of carriers.

First, Coulomb electron–hole correlations are of sec-
ndary importance at the carrier densities reached. The
ain many-body effects are due to the bandgap renormal-

zation (bandgap shrinkage) during the exciting pulse ac-
ion and are well described by the partial many-body-
ffects model.
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Second, both relaxation and, most notably, the bandgap
hrinkage are responsible for the carriers’ density depen-
ence on the chirp sign. Relaxation favors the IPDP for
C pulse excitation and discriminates against it when

he pulse chirp is positive. As for the bandgap shrinkage,
t enlarges an effective spectral bandwidth of the exciting
ulse for PC excitation (enhancing ARP and suppressing
PDP) and decreases the spectral bandwidth for NC exci-
ation (suppressing ARP and enhancing IPDP). As a mat-
er of fact, the bandgap shrinkage, which is the main
any-body effect, gives the dominant contribution to the

symmetry of the carriers’ density dependence on the
hirp sign.

Third, inclusion of many-body effects enlarges the car-
iers’ density in comparison with the solely relaxation
odel. The picture of the time-dependent renormalized

ispersion (Fig. 6) offers an explanation of the carriers’
ensity enhancement due to the bandgap shrinkage.
In conclusion, our calculations show that the depen-

ence of carriers’ density n on the chirp rate in the fre-
uency domain ����� is only slightly affected by details of
he time behavior of relaxation rates. The dependence
������� calculated with average values of relaxation
ates over the pulse is very close to that of the total
odel.

PPENDIX A: CARRIER–CARRIER
CATTERING
he scattering terms �dPk /dt�scat and �dFk

c /dt�scat can be
ritten as

�dFk
c

dt
�

scat

= �in
c �k,F��1 − Fk

c � − �out
c �k,F�Fk

c ,

�dPk

dt
�

scat

= − Pk

k�

W̄k�k
p + 


k�

W̄kk�
p Pk �A1�

n the framework of the Boltzmann equation.35,21,36,37

ere, �in
c �k ,F�=
k�W̄kk�

c Fk�
c , �out

c �k ,F�=
k�W̄k�k
c �1−Fk�

c �,
¯

k�k
c is the Boltzmann scattering matrix for carriers, and

¯
k�k
p is the scattering matrix for the polarization. The

cattering matrices W̄k�k
c,p are the sums of the scattering

atrices for carrier–carrier and carrier–phonon interac-
ions. In particular,

W̄k�k
e = W̄k�k

e−e + W̄k�k
e−h + W̄k�k

e−ph,

W̄k�k
h = W̄k�k

h-h + W̄k�k
h-e + W̄k�k

h-ph, �A2�

here e−e, h−h and e−h correspond to electron–electron,
ole–hole and electron–hole scattering, respectively, and
−ph corresponds to carrier–phonon scattering.

A full kinetic treatment with scattering terms deter-
ined by Eq. (A1) is numerically too demanding. There-

ore we employ the relaxation-time approximation (see
ection 2). However, this approximation for carrier–
arrier scattering must be used with caution. The point is
hat outright discarding of nondiagonal terms results in a
arge overestimation of the relaxation rates at low densi-
ies and an incorrect dependence of these rates on
ensity.45,36,37 The reason is that carrier–carrier scatter-
ng processes are strongly peaked in the forward direction
t low densities, owing to weak screening. Taking into ac-
ount contributions with the structure of “in-scattering
erms” on the right-hand side of Eqs. (A1), (�in

c �k ,F� for
dFk

c /dt�scat, and the second term 
k�W̄kk�
p Pk� for

dPk /dt�scat), on the other hand, results in physically rea-
onable values and the density dependence of the relax-
tion rates.36 One can take into account the contribution
f in-scattering terms in the framework of the relaxation-
ime approximation by redetermining such diagonal re-
axation rates as momentum or energy relaxation.35 Both
elaxation rates are of the same order of magnitude for
arrier–carrier scattering and are characterized by a
imilar density dependence. Below, we use the momen-
um relaxation rate, which is more convenient for our cal-
ulations.

A number of the momentum-relaxation rates for
arrier–carrier scattering can be found in the
iterature.46,47 For the nondegenerate (ND) case, when
he carrier temperature T is much larger than the tem-
erature TFc (corresponding to the Fermi energy kBTFc
��2 /2mc��3�2n�2/3), the quantity ��k

c-c,ND� is given by the
ormula

��k
c-c,ND� =

4

3
� 2

�3

EBc

�
�TFc/T�3/2 ln Qs

−2, �A3�

here EBc=m̄cEB is the effective Rydberg energy, EB
mre4 / �2�2�0

2� the exciton Rydberg energy, m̄c�mc /mr
nd Qs the screening wavenumber related to the Debye–
ückel screening qs

2=8�n�e2 /�0� /kBT: Qs
2

�2qs
2 / �2mc�kBT��= �16/3��TFc

3/2TRc
1/2 /T2; kBTRc=EBc.

The contribution of the electron–hole scattering to the
omentum relaxation rate is46

��k
e−h,ND� =

16

9�3/2

EB

�
�Tn/T�3/2 ln Qn

−2, �A4�

here T�Tn=TFcm̄c, Qn
2 = �16/3��Tn

3/2TR
1/2 /T2, kBTR=EB.

Now let us turn our attention to the degenerate (D)
ase. In this case momentum relaxation rates ��k

c-c,D� for
lectron–electron and hole–hole scattering are given by
he formula35,48

��k
c-c,D� =

�2

6

EBc

�
� T

TFc
�2kF



, �A5�

hen T�TFc. Here, 
 is the screening wavenumber given
y Eq. (11) and kF= �3�2n�1/3 is the momentum at the
ermi level. Since Eq. (11) for 
 is reduced to the
homas–Fermi formula


2 = 4
mr�e2/�0�

�2 �3n

�
�1/3

�me + mh� �A6�

or T�T , we finally obtain
Fc
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��k
c-c,D� =

�5/2

12

EBc

�
� T

TFc
�2�kBTFc

EBc
�1/4 m̄c

1/2

�me + mh�1/2
.

�A7�

he momentum relaxation rate due to electron—hole
cattering for T�Tn was obtained in Ref. 46:

��k
e−h,D� =

�5/2

12

EB

�
� T

Tn
�2�kBTn

EB
�1/4 m̄e

2m̄h
2

�me + mh�1/2
. �A8�

t is noteworthy that factors �T /TFc�2 and �T /Tn�2 in Eqs.
A7) and (A8), respectively, are related to the phase-space
estriction in the degenerated case. The factors
kBTFc /EBc�1/4 and �kBTn /EB�1/4 in these equations come
rom screening.

Equations (A3), (A4), and (A7) correspond to limited
ases of ND and D electron–hole plasma, respectively.
here are no corresponding analytical expressions in the

ntermediate region when T�TFc ,Tn. However, it can be
hown from the foregoing equations46 that relaxation
ates are proportional to n for small n:

� ��k
c-c,ND�

��k
e−h,ND�� = �gND� m̄c

−1/2

2�2/3
�n �A9�

here ��1 (see below), and tend to zero as n−7/6 when n
s very large:

� ��k
c-c,D�

��k
e−h,D�� = gD� m̄c

3

m̄e
2m̄h

2�n−7/6 �A10�

ere

gND =
2��EB�2

�kBTmr�3/2 �A11�

nd

gD =
��/3�1/6EB

3/4�kBT�2mr
7/4

21/49�9/2�me + mh�1/2
. �A12�

herefore one can reasonably expect for the relaxation
ates under consideration, as a function of n, a smooth
urve with a maximum in the intermediate region T
TFc ,Tn.46 In the framework of our semiquantitative de-

cription for carrier-carrier scattering it will suffice to ex-
end both limiting cases, as a function of n, until the cor-
esponding curves intersect. Flattening of the peak can be
chieved by a two-point Pade approximation49:

��k
c-c� =

�gNDm̄c
−1/2n

1 + �
gND

gD
m̄c

−7/2n13/6

, �A13�

��k
e−h� =

2��2/3��gNDn

1 + 2��2/3��
gND

gD
m̄e

−2m̄h
−2n13/6

.

�A14�

moothed dependences, Eqs. (A13) and (A14), are close to
he nonsmoothed ones when �=2. Such a procedure for
=2 is used for calculating the relaxation rates due to
arrier-carrier scattering in Sec. 3.

PPENDIX B: CARRIER–PHONON
CATTERING
he relaxation parameters for carrier–phonon scattering

dFk
c /dt�c-ph

�0� and ��k
c-ph� in Eqs. (14) and (17), respectively,

an be calculated, using the scattering matrix W̄k�k
c-ph [see

qs. (A2)], which is given by the Fermi golden rule35,27:

W̄k�k
�±�c-ph =

2�

�
�Mk�k

±q �2�NT0
���0� +

1

2
±

1

2
����k

0c − �k�
0c

� ��0�,

�B1�

here W̄k�k
�±�c-ph are the rates of carrier–phonon scattering

or emission (�) or absorption (�) of LO phonons, ��0 is
he energy of LO phonons, NT����= �exp�����−1�−1 is the
ose function, and q= ± �k−k�� is the transferred momen-

um. The scattering matrix elements Mk�k
±q are given by

he formula

�Mk�k
±q �2 = �k�,k�q

1

L3B�q�, �B2�

here �k�,k�q is the Kronecker delta and the quantity B is
etermined by35

B�q� =
B0

q2 � q2

q2 + 
2�2

�B3�

n the instantaneous quasi-static approximation for
creened polar carrier-LO phonon interaction. 
2 is given
y Eq. (11), B0= �1/�PO���3p0

c /mc, p0
c = �2mc��0�1/2 /�, �PO

�2��0�−1 is the characteristic time for carrier-LO phonon
cattering, �=e2�mr /2�0�1/2�1/��−1/�0� and �� is the
igh-frequency dielectric constant of a semiconductor.
Using Eqs. (B1)–(B3), we obtain for �dFk

c /dt�c-ph
�0� :

�dFk
c

dt
�

c-ph

�0�

= −
1

4���0

�k
0c �1/2 1

�PO
�NT���0� − NT0

���0��

�	�fF
c��k

0c − ��0� − fF
c��k

0c�� ���k
0c − ��0�Uc

+

+ �fF
c��k

0c + ��0� − fF
c��k

0c��Uc
−
, �B4�

here fF
c��k

0c�� fk
c��c�t� ,T�t��, ���k

0c−��0� is the Heaviside
tep function [���k

0c−��0�=1 for �k
0c−��0�0 and ���k

0c

��0�=0 for �k
0c−��0�0],

Uc
± = ln

���k
0c � ��0�1/2 + ��k

0c�1/2�2 + 
2
�2

2mc

���k
0c � ��0�1/2 − ��k

0c�1/2�2 + 
2
�2

2mc

+

2

�2mc

�2 ����k
0c � ��0�1/2 + ��k

0c�1/2�2 + 
2

−

2

�2mc

�2 ����k
0c � ��0�1/2 − ��k

0c�1/2�2 + 
2

. �B5�
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quation (B4) enables us to describe the energy transfer
etween carriers and the LO phonon system.35,50 The pro-
ess under consideration conserves the carriers’ densities.

Let us turn to relaxation rates ��k
c-ph�. ”The diagonal” in

relaxation rates before averaging over quasi-
quilibrium distributions can be written in the form35

�k
c-ph = 


k�
�W̄k�k

�+�c-ph
1 − fF

c��k
0c − ��0�

1 − fF
c��k

0c�

+ W̄k�k
�−�c-ph

1 − fF
c��k

0c + ��0�

1 − fF
c��k

0c� �. �B6�

ubstituting Eqs. (B1)–(B3) into Eq. (B6), and averaging
ver quasi-equilibrium distributions, we finally obtain

��k
c-ph� =

mcp0
c

�2�2�nc

1

�PO

1

2
�

0

� q3dq

�q2 + 
2�2„�NT0
���0� + 1�

�exp�− ���0� ln	1 + exp����c + ��0 − �+��


+ NT0
���0�exp����0� ln	1 + exp����c − ��0

− �−��
…, �B7�

here �±= ±��0 /2+ ���0 /4���q /p0
c�2+ �p0

c /q�2�,
0
c = �2mc��0�1/2 /�.
One can see from Eq. (B7) that the carrier–phonon re-

axation rate ��k
c-ph� does not depend on the carrier den-

ity for small densities since, in this limit, ln	1
exp����c±��0−�±��
�exp����c±��0−�±���n.

PPENDIX C: ANALYTICAL SOLUTION
here exist an analytic solution39,40 of the undamped
loch equations resulting from Eqs. (3) and (4) for the

ree-carrier model (no many-body effects) and a chirped
ulse of special shape

E�t� = E0 sech� t − t0

�
�, 	�t� =

�

��
�

0

t

tanh� t� − t0

�
�dt�.

fter completion of the pulse action and for the initial
onditions of Section 3, this solution is the following:

Fk
e ��� + Fk

h��� = 2 sec��� + �0�/2�sec��� − �0�/2�

��sin2��

2
�cosh2��

2
�

+ cos2��

2
�sinh2��

2
�� , �C1�

here �= ��2−�2�1/2, �= �dcv /���−�
� E�t��dt�= �dcv /��E0��,

nd �0=����k
0 /�−
0� are the dimensionless pulse area

nd detuning, respectively.
Integrating quantity Fk

e ���+Fk
h��� [see Eq. (C1)] with

espect to momentum k, and taking into account the limi-
ation on the excitation energy [see Eq. (9)], we obtain
��� =
�2mr

3/2

�3�2 �
0

�

d���
1

1 + exp��� − �c�/�
c�

cosh � − cos �

cosh � + cosh �0
.

�C2�

ne can see from Eq. (C2) that the solutions for n��� are
ymmetric with respect to the sign of chirp.

PPENDIX D: EVALUATION OF BANDGAP
HRINKAGE DURING PULSE ACTION
et us estimate the bandgap shrinkage 
�k=
�CH

�SX,k during the excited-pulse action [see Eqs. (6) and

7)]. Quantities 
�CH and 
�SX,k were evaluated in Refs.
3 [Eq. (4.48)] and Ref. 27 [Eq. (9.29)], respectively. Using
hese equations and introducing the normalized distance
s between particles via relation27 �4� /3�rs

3=1/ �naB
3 �, we

btain


�CH = − 7.62
EBrs

−1/2

�1 + 8.4rs
1/2�1/2

, �D1�


�SX,k = − 0.81EBrs
−1�1 −

1

1 + 2.51rs
−1� , �D2�

here aB=�2�0 / �e2mr� is the exciton Bohr radius and EB
s the exciton Rydberg energy. In our simulation a typical
alue of the carrier density after the completion of the
ulse action is n=5�1018cm−3, EB=4.2 meV, and aB
14 nm.27 Substituting these values into Eqs. (D1) and

D2), we have 
�k=
�CH+
�SX,k�−41 meV.
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