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ABSTRACT

Graphene electrodes provide a suitable alternative to metal contacts in molecular conduction nanojunctions.
Here, we propose to use graphene electrodes as a platform for effective photon assisted tunneling through molec-
ular conduction nanojunctions. We predict dramatic increasing currents evaluated at side-band energies ∼ n~ω
(n is a whole number) related to the modification of graphene gapless spectrum under the action of external
electromagnetic field of frequency ω. A side benifit of using doped graphene electrodes is the polarization control
of photocurrent related to the processes occurring either in the graphene electrodes or in the molecular bridge.
The latter processes are accompanied by surface plasmon excitation in the graphene sheet that makes them
more efficient. Our results illustrate the potential of graphene contacts in coherent control of photocurrent in
molecular electronics, supporting the possibility of single-molecule devices.

Keywords: Nanojunctions, Photon-assisted tunneling, Doped graphene electrodes, Quasienergy spectrum, Po-
larization control of photocurrent

1. INTRODUCTION

The field of molecular-scale electronics has been rapidly advancing over the past two decades, both in terms of
experimental and numerical technology and in terms of the discovery of new physical phenomena and realization
of new applications (for recent reviews please see Refs.1–3). In particular, the optical response of nanoscale
molecular junctions has been the topic of growing experimental and theoretical interest in recent years,4–15

fueled in part by the rapid advance of the experimental technology and in part by the premise for long range
applications in optoelectronics. A way of the control of the current through molecular conduction nanojunctions
is the well-known photon-assisted tunneling (PAT)1,16 that was studied already in the early 1960’s experimentally
by Dayem and Martin17 and theoretically by Tien and Gordon using a simple theory which captures already
the main physics of PAT.18 The main idea is that an external field periodic in time with frequency ω can induce
inelastic tunneling events when the electrons exchange energy quanta ω with the external field. PAT may be
related either to the potential difference modulation between the contacts of the nanojunction when electric
field is parallel to the axis of a junction,14,16,18–20 or to the electromagnetic (EM) excitation of electrons in the
metallic contacts when electric field is parallel to the film surface of contacts.18 According to the Tien-Gordon
model14,16,18 for monochromatic external fields that set up a potential difference V (t) = V0 cos ωt, the rectified
dc currents through ac-driven molecular junctions are determined as14,16

ITG =
∞∑

n=−∞
J2

n(
eV0

~ω
)I0

dc(eV0 + n~ω) =
∞∑

n=−∞
In (1)

where the current in the driven system is expressed by a sum over contributions of the current I0
dc(eV0 + n~ω)

in the undriven case but evaluated at side-band energies eV0 + n~ω shifted by integer multiples of the photon
quantum and weighted with squares of Bessel functions. A formula similar to Eq.(1) can be obtained also for EM
excitation of electrons in the metallic contacts.18 Note that the partial currents In contain contributions from
±n. The term Jn( eV0

~ω ) denotes the n-th-order Bessel function of the first kind. The photon absorption (n > 0)
and emission (n < 0) processes can be viewed as creating effective electron densities at energies eV0 ± n~ω with
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probability J2
n( eV0
~ω ). These probabilities strongly diminish with number n when eV0 ≤ ~ω that severely sidelines

the control of the current for not strong EM fields (< 106 V/cm1).

In the last time graphene, a single layer of graphite, with unusual two-dimensional Dirac-like electronic
excitations, has attracted considerable attention due to its exceptional electronic properties (ballistic in-plane
electron transport etc.)21–23 Quite recently they have shown interest to a new kind of graphene-molecule-
graphene (GMG) junctions that may exhibit unique physical properties, including a large conductance (achieving
0.38 conductance quantum), and are potentially useful as electronic and optoelectronic devices.24 The junction
consists of a conjugated molecule connecting two parallel graphene sheets. In this relation it would be interesting
to investigate PAT in such a junction to control the current through it. The PAT in GMG junctions under EM
excitation of electrons and holes in the graphene contacts may be rather different from that for usual metallic
contacts. It was shown that the massless energy spectrum of electrons and holes in graphene led to the strongly
non-linear EM response of this system, which could work as a frequency multiplier.25 The predicted efficiency of
the frequency up-conversion was rather high: the amplitudes of the higher-harmonics of the ac electric current fell
down slowly (as 1/n) with harmonics index n. Sure, the strongly non-linear EM response should also lead to a slow
falling down currents evaluated at side-band energies ∼ n~ω (see Eq.(1)) with harmonics index n in comparison
to nanojunctions with metallic (or semiconductor26) leads (see below). This makes controlling charge transfer
essentially more effective than that for molecular nanojunctions with metallic contacts. Complimentary factors
that may enhance currents evaluated at side-band energies ∼ n~ω in nanojunctions with graphene electrodes are
linear dependence of the density of states on energy in graphene,21 and the gapless spectrum of graphene that
can change under the action of external EM field (see below).

Here we propose and explore theoretically a new approach to coherent control of electric transport via
molecular junctions, using either both graphene electrodes or one graphene and another one - a metal electrode
(that may be an STM tip). Our approach is based on the excitation of dressed states of the doped graphene
electrode with electric field that is parallel to its surface, having used unique properties of graphene mentioned
above. As a first step, we calculate a semiclassical wave function of a doped graphene under the action of
EM excitation. Then we obtain Heisenberg equations for the second quantization operators of graphene and
calculate current through a molecular junction with graphene electrodes using non-equilibrium Green functions
(GF). We address different cases, which are analytically soluble, hence providing useful insights. We show that
using graphene electrodes can essentially enhance currents evaluated at side-band energies ∼ n~ω in molecular
nanojunctions.

2. CALCULATION OF SEMICLASSICAL WAVE FUNCTION
The states of electrons in graphene are conveniently described by the four-component wave functions, defined on
two sublattices and two valleys. Electron motion in the time-dependent EM field is described by the 2D Dirac
equation21,23

i~
∂ψ

∂t
= [vσ̂(p̂− e

c
A) + eϕpot]ψ (2)

written for a single valley and for a certain direction of spin. Here p̂ is the momentum of the quasiparticle, v
- the Fermi velocity (v ≈ 106 m/s), σ̂ - the vector of the Pauli matrices in the sublattice space (“pseudospin”
space), A and ϕpot are vector and scalar potentials of an EM field, respectively. Suppose a graphene film is
excited by a linearly polarized monochromatic electric field Ex(t) = E0 cos ωt that is parallel to its plane (x, y).
Then Ax = −(c/ω)E0 sin ωt, Ay = Az = 0. Eq.(2) can be brought to more symmetric form i[P̂ − (e/c)Â]ψ =0,
introducing matrices γ1 = σ̂y, γ2 = −σ̂x and γ3 = σ̂z, where

P̂ = −i~
3∑

k=1

γk
∂

∂xk
, Â =

3∑

k=1

γkAxk
, (3)

x1 = x, x2 = y, x3 = ivt and Ax3 = i c
v ϕpot. To obtain a semiclassical solution of Eq.(2), we shall use a method

of Ref.27 (see also28). Let us put ψ = −i(P̂ − e
c Â)Φ. Then one can obtain the following equation for Φ

[i
~e
2c

3∑

k,l=1

γkγl(1− δkl)Fxlxk
−

3∑

k=1

(~
∂

∂xk
− i

e

c
Axk

)2]Φ = 0 (4)
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where Fxlxk
= ∂Axl

/∂xk − ∂Axk
/∂xl is the field tensor. Let us seek a solution of Eq.(4) as an expansion in

power series in ~
Φ =exp(iS/~)w = exp(iS/~)(w0 + ~w1 + ~2w2 + ...) (5)

where S is a scalar and w is a slowly varying spinor.29 Substituting series, Eq.(5), into Eq.(4) and collecting
coefficients at the equal exponents of ~, we get that S is the action obeying the Hamilton-Jacobi equation
∂S/∂t = −H where H is the classical Hamilton function of a particle:

exp(
i

~
S) = exp[− i

~
(v

∫ t

0

√
p̄2

x + p̄2
ydt′ + e

∫ t

0

ϕpotdt′)], (6)

and the equation for spinor w0

3∑

k=1

{[ ∂

∂xk
(

∂S

∂xk
− e

c
Axk

)]w0 + 2(
∂S

∂xk
− e

c
Axk

)
∂w0

∂xk
− e

2c

3∑

l=1

γkγl(1− δkl)Fxlxk
w0} = 0 (7)

In Eq.(6), p̄ is the normal momentum that obeys the classical equations of motion dp̄x/dt = −eEx(t) for a
particle with charge −e, according to which p̄x(t) = −(eE0/ω) sin(ωt); p̄ = p − e

cA where p is the generalized
momentum. If one takes only the first term in series, Eq.(5), into account, it can be shown that wave packets
behave like particles moving along classical trajectories. After combersome calculations we get the wave function
normalized for the graphene sheet area s:

ψ =
1√
s

exp(ipxx/~+ ipyy/~) exp[
i

~
(∓v

∫ t

0

p̄dt′−

− e

∫ t

0

ϕpotdt′)]ūp± (8)

where slowly varying spinors ūp± are equal to

ūp±=
1√
2

(
exp(−iϕ̄/2)
± exp(iϕ̄/2)

)
, (9)

p̄ ≡ |p̄(t)|, tan ϕ̄ = p̄y/p̄x, px = p cosϕ, py = p sin ϕ, tan ϕ = py/px. In the absence of external EM field Eqs.(8)
and (9) give the exact wave function of unperturbated graphene.21 Eqs.(8) and (9) show remarkable and very
simple result, according to which the time-dependent part of the semiclassical wave function is defined by the
same formula as that for the unperturbated system with the only difference that the generalized momentum
p should be replaced by the usual momentum p̄. The space-dependent part of the wave function remains
unchanged.

3. HEISENBERG EQUATIONS FOR THE SECOND QUANTIZATION OPERATORS
OF GRAPHENE

The wave function of the graphene sheet interacting with molecular bridge Ψ may be represented as the super-
position of wave functions, Eqs.(8) and (9). Passing to the second quantization, we get

Ψ =
1√
s

∑
+,−

∑
p

âp± exp[
i

~
pr +

i

~
(∓v

∫ t

0

p̄dt′

− e

∫ t

0

ϕpotdt′)]ūp± (10)

where âp± are annihilation operators. To obtain the Hamiltonian in the second quantization representation,
consider an average energy of a particle with wave function ψ that is given by

∫
ψ∗Ĥψdr =i~

∫
ψ∗(∂ψ/∂t)dr.

Replacing wave functions ψ for Ψ operators and integrate with respect to r, we get

Ĥ =
∫

Ψ†ĤΨdr =
∑
pσ

∑
+,−

â†p±,σâp±,σ[±vp̄(t) + eϕpot(t)] (11)
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where
∑

σ â†p±,σâp±,σ = â†p±âp±, σ = 1, 2 is the ”quasispin” index. In deriving Eq.(11), we have taken into
account that the main contribution to ∂Ψ/∂t in the semiclassical approximation is given by the exponential term
on the right-hand side of Eq.(10) (see Ref.,30 chapter II). In addition, we beared in mind that the summation
over p can be substituted by the integration over phase space dΓ = dpdr

∑
p

→
∫

dΓ
(2π~)2

=
s

(2π~)2

∫
dp (12)

Using Hamiltonian, Eq.(11), we obtain the Heisenberg equations of motion

dâp±,σ(t)
dt

=
i

~
[Ĥ, âp±,σ]' i

~
[∓vp̄(t)− eϕpot(t)]âp±,σ(t) (13)

4. FORMULA FOR CURRENT

Consider a spinless model for a molecular wire that comprises one site of energy εm, positioned between either
both graphene electrodes (leads) or one graphene and another one - a metal electrode. The corresponding
Hamiltonian is Ĥwire + Ĥleads + V̂ where the wire Hamiltonian is Ĥwire = εmĉ†mĉm, ĉ†m (ĉm) are creation
(annihilation) operators for electrons at the molecular wire. The molecule-leads interaction V̂ describes electron
transfer between the molecular bridge and the right (R) and left (L) leads that gives rise to net current in the
biased junction

V̂ =
∑
+,−

∑

σ,p∈{L,R}
(Vp±,σ;mâ†p±,σ ĉm + H.c.), (14)

Here H.c. denotes Hermitian conjugate. The current from the K lead (K = L,R) can be obtained by the
generalization of Eq.(12.11) of Ref.31

IK = −2κe

~
Re

∑
+,−

∑

σ,p∈K

Vp±,σ;mG<
m;p±,σ(t, t) (15)

where κ = 1 for the metal electrode, and κ = 2 for the graphene electrode that accounts for the valley degen-
eracies of the quasiparticle spectrum in graphene. G<

m;p±,σ(t, t′) = i〈â†p±,σ(t′)ĉm(t)〉 denotes the lesser GF that
is given by

G<
m;p±,σ(t, t′) =

1
~

∫
dt1V

∗
p±,σ;m[Gr

mm(t, t1)g<
p±,σ(t1, t′)+

+ G<
mm(t, t1)ga

p±,σ(t1, t′)] (16)

where Gr
mm(t, t1) and G<

mm(t, t1) are the retarded and lesser wire GFs, respectively; g<
p±,σ(t, t′) = i〈â†p±,σ(t′)âp±,σ(t)〉

and ga
p±,σ(t1, t′) = iθ(t′− t1)〈{âp±,σ(t1), â

†
p±,σ(t′)}〉 are the lesser and advanced lead GFs, respectively; θ(t′− t1)

is the unit function. Using Eq.(13), we get

g<
p±,σ(t, t′) = i〈â†p±,σ(t′)âp±,σ(t)〉 = ifK(vp±)×

× exp{ i

~
[−eϕpot,K(t− t′)∓ v

∫ t

t′
dt′′p̄(t′′)]} (17)

and

ga
p±,σ(t1, t′) = iθ(t′ − t1) exp{ i

~
[−eϕpot,K(t1 − t′)∓ v

∫ t1

t′
dt′′p̄(t′′)]} (18)

where fK(vp±) ≡ 〈â†p±,σ(0)âp±,σ(0)〉 =
[
1 + exp

(
±vp−µK

kBT

)]−1

is the Fermi function and µK - the chemical
potential of lead K. Substituting Eqs.(16), (17) and (18) into Eq.(15), and converting the momentum summations
to energy integration, Eq.(12), we get
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IK =
4e

~

∫ t

−∞
dt1

∑
+,−

Im
∫ ∞

0

d(vp)
2π

exp[± i

~
eϕpot,K(t− t1)]×

× ΓK
mm(±vp, t1,t)[Gr

mm(t, t1)fK(±vp) + G<
mm(t, t1)] (19)

where

ΓK
mm(±vp, t1,t) =

2π

~

( s

2π2~v2

) ∑

σ∈K

∫ π

0

dθvpVp±,σ;m(t)×

× V ∗
p±,σ;m(t1) exp[± i

~
v

∫ t

t1

dt′p̄(t′)] (20)

is the level-width function.
To proceed, we shall make the time expansion of ΓK

mm(±vp, t1,t) into the Fourier series, and then use the
Markovian approximation, considering time t − t1 ≡ τ as very short. This will also enable us to use the non-
interacting resonant-level model31 for finding the time dependence of Gr

mm(t, t − τ) = −iθ(τ) exp(− i
~εmτ) and

G<
mm(t, t − τ) = inm(t) exp(− i

~εmτ) as functions of t and t − τ where nm(t) is the population of molecular
state m. According to the Floquet theorem,1 the general solution of the Schrödinger equation for an electron
subjected to a periodic perturbation, takes the form ψ(t) = exp(− i

~εt)ΦT (t), where ΦT (t) is a periodic function
having the same period T as the perturbation, and ε is called quasienergy. Then the expansion of function
exp[ i

~v
∫ t

0
dt′p̄(t′)] on the right-hand side of Eq.(8) into the Fourier series will be as following

exp[
i

~
v

∫ t

0

dt′p̄(t′)] = exp[
i

~
ε(p, θ)t]

∞∑

l=−∞
cl(p, θ) exp(iltω) (21)

where

cl(p, θ) =
ω

2π

∫ π/ω

−π/ω

exp[
i

~
v

∫ t

0

dt′p̄(t′)− i

~
ε(p, θ)t− ilωt]dt (22)

Using expansion, Eq.(21), into Eq.(20) and neglecting fast oscillating with time t terms, we get

ΓK
mm(±vp, τ) =

2π

~

( s

2π2~v2

) ∑

σ∈K

∫ π

0

dθvp|Vp±,σ;m|2×

×
∞∑

n=−∞
|cn(p, θ)|2 exp{±i[

ε(p, θ)
~

+ nω]τ} (23)

Then going to the integration with respect to τ in Eq.(19) and bearing in mind Eq.(23), we get

IK = 4e
∑

σ∈K

∫ π

0

dθ

∞∑
n=−∞

[nm(t)− fK(vpn±)]×

× |cn(pn±, θ)|2γ̄(n)±
GKσ,m (24)

where we denoted

γ̄
(n)±
GKσ,m =

s

2π~3v2

∫ ∞

0

vpd(vp)|Vp±,σ;m|2×

× δ[±(ε(p, θ) + n~ω) + eϕpot,K − εm] (25)

is the spectral function for the n-th photonic replication, δ(x) is the Dirac delta, arguments pn± are defined by
equation

ε±(p, θ) = ±(εm − eϕpot,K)− n~ω (26)
and should be positive. Below we shall consider Vp±,σ;m not dependent on p± and quasispin σ.
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5. MOLECULAR BRIDGE BETWEEN GRAPHENE AND METAL ELECTRODES

Consider a specific case when the molecular bridge is found between graphene and metal (tip) electrodes. In
that case one can use Eq.(24) for K = L:

IL = 4e
∑

σ∈K

∞∑
n=−∞

[nm(t)− fL(vpn±)]×

×
∫ π

0

dθ|cn(pn±, θ)|2γ̄(n)±
GLσ,m (27)

If R represents the metal electrode, then

IR = 2eγRm[nm(t)− fR
p ] (28)

where 2γRm is the charge transfer rate between the molecular bridge and the metallic lead. In the case under
consideration the equation for nm(t) becomes

dnm

dt
= −IL/e− IR/e (29)

that is written as the continuity equation. Inserting Eqs.(27) and (28) into Eq.(29), solving the latter for the
steady-state regime and substituting the solution into Eq. (28), we get

IR = 4e
∑

σ

∞∑
n=−∞

∫ π

0

dθ|cn(pn±, θ)|2γ̄(n)±
GLσ,m[fL(vpn±)− fR

p ] (30)

for a special case

γRm/2 >>
∑

σ

∞∑
n=−∞

γ̄
(n)±
GLσ,m

∫ π

0

dθ|cn(pn±, θ)|2

Eq.(30) seems similar to that of Tien and Gordon, Eq.(1), and generalizes it. To calculate current, we shall use
a variety of approaches.

5.1 Calculations using Cumulant Expansions

Function exp[ i
~v

∫ t

0
dt′p̄(t′)] may be written in the dimensionless form as exp(iα

b

∫ τ

0
dx

√
1 + 2b cos θ sin x + b2 sin2 x)

where b ≡ (eE0v/ω)/(vp) and α = (eE0v/ω)/(~ω) represent the work done by the electric field during one fourth
of period weight per unperturbated energy vp and photon energy ~ω, respectively; τ = ωt, and we assume
eE0 > 0. If b < 1, one can use the cumulant expansion, and we get exp[iα

b

∫ τ

0
dx

√
1 + 2b cos θ sin x + b2 sin2 x] =

exp[G1(τ) + G2(τ)], where correct to fourth order with respect to b,

G1(τ) = iα cos θ(1− b2

3
sin2 θ) + i

α

b
[1 +

b2

4
sin2 θ−

− 3b4

64
sin2 θ(1− 5 cos2 θ)]τ, (31)

G2(τ) = iz1 cos τ + iz2 sin 2τ + iz3 cos 3τ + iz4 sin 4τ (32)

Here parameters zl ∼ bl−1 are defined by z1 = α cos θ[−1 + (3/8)b2 sin2 θ], z2 = (αb/8) sin2 θ[−1 + (b2/4)(1 −
5 cos2 θ)], z3 = −(αb2/48) sin 2θ sin θ and z4 = −(αb3/256) sin2 θ(1− 5 cos2 θ).

As a matter of fact, the second term on the right-hand side of Eq.(31) that is proportional to τ describes the
quasienergy weight per photon energy ε(p, θ)/(~ω) = α

b [1 + b2

4 sin2 θ− 3b4

64 sin2 θ(1− 5 cos2 θ)] that is anisotropic:
ε(p, θ) = vp when the momentum is parallel to electric field (θ = 0 or π), and is most different from vp when
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Figure 1. Current in the linear regime for n-doped (µ > 0, solid) and p-doped (µ < 0, dashed) graphene electrode as a
function of applied voltage bias. |εm| = 3~ω, α = 0.7.

the momentum is perpendicular to the electric field (θ = π/2). The term exp[G2(τ)] can be expanded in terms
of the Bessel functions Js(zi). This gives for quantities |cl(p, θ)|2, Eq.(22), expansion

|cl(p, θ)|2

= [
∑

s2s3s4

Jl−2s2−3s3−4s4(z1)J−s2(z2)J−s3(z3)Js4(z4)]2 (33)

that converge fast. For a linear case (weak fields) |c0(p, θ)|2 ≈ 1, |c±1(p, θ)|2 ≈ (α cos θ)2/4, ε(p, θ) ≈ vp, and we
get from Eq.(26): vpn± = ±(εm − eϕpot,K)− n~ω. In that case quantities γ̄

(n)±
GLσ,m, Eq.(25), become

γ̄
(n)±
GLσ,m =

γ0

π
[± (εm − eϕpot,L)

~ω
− n] (34)

where γ0 = |Vp±,σ;m|2sω/(2~2v2) and the expression in the square brackets is proportional to the DOS for
graphene that is proportional to energy.21 The current, Eq.(30), calculated in the linear regime using Eq.(34),
as a function of applied voltage bias is shown in Fig.1. In our calculations temperature T = 0, and the leads
chemical potentials in the biased junction were taken to align symmetrically with respect to the energy level εm,32

i.e., µ + eϕ0/2 for the left lead, and µ− eϕ0/2 for the right lead (eϕ0 ≥ 0, eϕpot,(L,R) = ±eϕ0/2) where µ = εm

for both leads. Both curves of Fig.1 show photon assisted current - the steps when the potential of the graphene
electrode achieves the value corresponding to the photon energy. The steps are found on the background that
decreases linearly for a n-doped graphene electrode and increases linearly for a p-doped electrode when eϕ0

increases. This is related to the linear dependence of DOS on energy. Fig.2 shows our model together with the
photonic replica of the graphene electrodes and elucidates the behavior observed in Fig.1.

When the interaction with external field is not small, α ≥ 1, the linear consideration does not apply. In
case of large momenta (far from the Dirac point), b << 1, Eq.(34) applies, and we get from Eq.(33) |cl(p, θ)|2 =
J2

l (α cos θ). The current, Eq.(30), calculated for large momenta when α = 3, as a function of applied voltage
bias is shown in Fig.3. The number of steps and their heights increase in comparison with the linear case.
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Figure 2. Molecular bridge between n-doped graphene (left-L) and metal (right-R) electrodes. Thick horizontal line -
energy of the molecular bridge εm, µL and µR = µ− eϕ0/2 - chemical potentials of the left and right leads, respectively,
in the biased junction. The energy spectrum of unperturbated graphene is shown by the solid line; dotted and dashed lines
show the upper and lower first photonic replica of the graphene spectrum, repectively, that are displaced an amount ~ω
from unperturbated spectrum. Solid thin horizontal line - chemical potential of unperturbated graphene µL = µ+eϕ0/2,
dashed thin horizontal lines - chemical potentials of the photonic replica µL = µ + eϕ0/2 ± ~ω. a - potential of the
graphene electrode is smaller than photon energy, eϕ0/2 < ~ω; b - potential of the graphene electrode is larger than
photon energy, eϕ0/2 > ~ω. The lower photonic replication gives contribution into the current only in case b) that causes
the step shown in Fig.1.
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Figure 3. Current in the case of large momenta for n-doped (µ > 0, solid) and p-doped (µ < 0, dashed) graphene electrode
as a function of applied voltage bias. |εm| = 20~ω, α = 3.

5.2 Calculations of Current including Small Momenta

To calculate coefficients cl(p, θ), Eq.(22), in general case, we need to know quasienergy ε(p, θ). The latter may
be found as zero harmonic of the Fourier cosine series of normal momentum p̄(t) on the left-hand side of Eq.(22).
Consider first limiting points θ = 0, π when the momentum is parallel to the electric field. Then the quasienergy
weight per the work done by the electric field during one fourth of period is equal to ε̄(p; θ = 0, π) ≡ ε(p; θ =
0, π)/(evE0/ω) = [1/(2πb)]

∫ π

−π
dx |1± b sin x|. If b < 1, ε̄(p; θ = 0, π) = 1/b ∼ vp like above. When b > 1,

ε̄(p; θ = 0, π) =
2
πb

[arcsin(
1
b
) +

√
1− 1

b2
] (35)

that gives for b >> 1

ε(p; θ = 0, π) =
1
π

[2α~ω +
(vp)2

evE0/ω
] (36)

- a quadratic dependence of ε(p; θ = 0, π) on vp for small vp or large evE0/ω accompanied by opening the gap
4α~ωπ (see Fig.5 below). This gap is different from those predicted in Refs.,23,33 which are induced by interband
transitions in an undoped graphene. In contrast, a semiclassical approximation used in our work is correct for
doped graphene when ~ω < 2µ,25 and as a consequence, interband transitions are excluded. Therefore, in our
case the gap is induced by intraband processes. When ε(p; θ = 0, π) is defined by Eq.(36), quantities γ̄

(n)±
GLσ,m,

Eq.(25), become γ̄
(n)±
GLσ,m = αγ0/4 that do not depend on n and are proportional to α.

Fig.4 shows the logarithm of the absolute values of Fourier-coefficients c+
l (p; θ = 0, π) for different l calculated

using Eqs.(22), (26) and (35). For comparison we also show the usual dependence |cl(p; θ = 0, π)| = |Jl(α)|. One
can see much slower falling down

∣∣c+
l (p; θ = 0, π)

∣∣ with harmonics index l in comparison to the usual dependence
that may be explained by the peculiarities of the graphene spectrum. One can show that |cl(p, θ| falls down as
1/l for b >> 1 and α << 1.
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Figure 4. The logarithm of the absolute values of Fourier-coefficients cl(p; θ = 0, π) (solid line) versus harmonic number l
for n-doped graphene contact (µ > 0) and α = 0.5, b = 1.43 > 1. For comparison we also show |Jl(α)| (dashed line). We
use the continuous variable l though l takes only the whole values.

Consider now the middle point θ = π/2 when the momentum is perpendicular to the electric field. In that
case one can show that

ε̄(p; θ = π/2) =
1

2πb

∫ π

−π

dx
√

1 + b2 sin2 x =

=
2
π

√
1 + b−2E[(1 + b−2)−1/2] (37)

where E(x) is the complete elliptic integral of the second kind.34 If b ¿ 1, ε̄(p, π/2) = 1/b like before. When
b >> 1, we get

ε(p, θ =
π

2
) =

1
π
{2α~ω + [

1
2

+ 2 ln(2

√
eE0

ωp
)]

(vp)2

evE0/ω
} (38)

where the dependence of ε(p, π/2) on p for small p (or large eE0/v) differs from quadratic one (cf. with Eq.(36)).
Hence, the quasienergy becomes anisotropic, however, its formation is accompanied by opening the same dy-
namical gap 4α~ωπ as for θ = 0, π. Quasienergies ε̄(p; θ = 0, π, π/2) defined by Eqs.(35) and (37) as functions of
1/b = vp/(eE0v/ω) are shown in Fig.5. They are equal to 2/π for zero momentum, then increase as ∼ (vp)2 for
θ = 0, π, Eq.(36), and according to Eq.(38) for θ = π/2. The law, Eq.(35), for θ = 0, π gives way to linear one
when 1/b = 1, and quasienergy for θ = π/2 also tends to linear one when 1/b >> 1 (large momenta).

6. CONCLUSION AND OUTLOOK

Here we have proposed and explored theoretically a new approach to coherent control of electric transport via
molecular junctions, using graphene electrodes. Our approach is based on the excitation of dressed states of the
doped graphene with electric field that is parallel to its surface, having used unique properties of the graphene.
We have calculated a semiclassical wave function of a doped graphene under the action of EM excitation and the
current through a molecular junction with graphene electrodes using non-equilibrium Green functions. We have
shown that using graphene electrodes can essentially enhance currents evaluated at side-band energies ∼ n~ω in
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Figure 5. Quasienergies ε̄(p; θ) for θ = 0, π (solid line) and π/2 (dashed line) as functions of 1/b = pω/(eE0).

molecular nanojunctions that is related to the modification of the graphene gapless spectrum under the action
of external EM field. We have calculated the corresponding quasienergy spectrum that is accompanied with
opening the gap induced by intraband excitations.

If one shall use an electric field that is perpendicular to the graphene sheet, the field can excite p-polarized
surface plasmons propagating along the sheet with very high levels of spatial confinement and large near-field
enhancement.35 Furthermore, surface plasmons in graphene have the advantage of being highly tunable via elec-
trostatic gating.35,36 These plasmon oscillations can enhance the light-matter interaction in a molecular bridge
resulting in much more efficient control of photocurrent related to the processes occurring in the molecular bridge
under the action of EM field polarized along the bridge.1,6, 15,32,37 Specifically, p-polarized surface plasmons may
strongly enhance the dipole-dipole interaction resulting in an exciton compensation of the Coulomb blocking of
electron transmission at high voltage - a new effect predicted in Ref.32 By this means a side benifit of using doped
graphene electrodes in molecular nanojunctions is the polarization control of the processes occurring either in the
graphene electrodes or in the molecular bridge. Such selectivity may be achieved by changing the polarization
of an excited EM field. This issue will be studied in more detail elsewhere.
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